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We show that the spin-wave spectrum in an elliptical helix
has a band character. The size of the first band gap calculated
using the perturbation theory is shown to scale as square root
of the eccentricity. Curved magnonic waveguides of the kind
considered here could be used as structural elements of future
three-dimensional magnonic architectures.

1. Introduction
The relation between topology and other properties of space
forms one of the key aspects in our understanding of nature,
including the remarkable connection between the curvature of
space and the strength of gravitational field [1]. In particular,
it has been shown that curvature plays an important role in
physics of low-dimensional systems, where it can be used to alter
their electronic and magnetic properties [2–10]. In the context of
magnonics (the study of spin waves) and magnonic devices, major
research efforts have been devoted to investigation of spin waves
[11,12] in curved (or otherwise shaped) magnonic waveguides
[13–25]—ubiquitous elements of any magnonic logic architecture
[26]—and more generally in non-uniform magnetic configurations
[27–38]. The growing variety of proposed magnonic devices and
architectures [39–44] ([45] and references therein) [46–48] requires
that the nature and diversity of mechanisms of scattering of
spin waves in topologically complex magnetic media and graded
magnonic landscapes [49–54] be properly understood.

The degree to which spin waves are scattered from a
waveguide’s bends and the nature of the scattering depends on
the character of the spin waves, which in turn depends on the

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
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Figure 1. Geometry of the problem and coordinate axes systems used are shown.

cross-sectional dimensions of the waveguide and the spin-wave frequency and wavelength. The early
reports of Bance et al. [13] and Dvornik et al. [17] suggested minimal scattering of magnetostatic and
dipole exchange spin waves from magnonic waveguide bends, which was in contrast to experimental
observations of Clausen et al. [14] who reported transformation of spin-wave modes propagating along
twisted waveguides. The latter experimental results found exhaustive theoretical support in works of
Xing et al. [18,24], who have offered more detailed numerical simulations of spin wave propagation
though bent magnonic waveguides, as compared to [13] and [17]. The role of the applied magnetic field
and the internal magnetic field profile was revealed by Sadovnikov et al. [55]. Yet, we are still to see
a rigorous theory (either analytical or numerical, e.g. based on the procedure devised for monomode
waveguides in [43]) of the spin-wave scattering in multimode magnonic waveguides with curved
regions. Recently, the spin-wave mode transformation was also observed in T-junctions of magnonic
waveguides [56], while the relevance of the graded magnonic index to the spin-wave beam propagation
in networks of magnonic waveguides was highlighted in [25].

For exchange spin waves, mostly monomode magnonic waveguides have been considered. No
scattering from bends was accounted for (e.g. [57] and references therein), while Tkachenko et al.
discovered a special kind of geometrical magnetic anisotropy originating from the exchange interaction
in curved magnetic nanowires of infinitely small thickness [6,7]. This anisotropy leads to scattering of
exchange spin waves from nanowire bends, while a periodic alternation of straight and curved nanowire
sections results in formation of a magnonic band spectrum [6,7]. The theory was put on a more rigorous
theoretical footing, with a proper account of the effects associated with torsion, by Sheka et al. [8,9], while
a numerical evidence of the curvature-induced modulation of the exchange field in curved multimode
magnonic waveguides was reported in [18].

Here, we develop a continuous medium theory of the dispersion of exchange spin waves in an
ultrathin magnetic nanowire wound so as to form an elliptical helix (figure 1) with an infinitely small
pitch. In contrast to a circular helix, the curvature of the elliptical helix is periodically modulated, which
in turn modulates the geometrical anisotropy from [6,7]. Using the perturbation theory (similar e.g. to
[58]), we show that this modulation leads to a band spectrum for propagating exchange spin waves, with
the elliptical helix thereby forming a special kind of a magnonic crystal [59].

2. Basic equations
Let us introduce orthogonal curvilinear coordinates of an elliptical cylinder with axes defined by the basis
unit vectors σ, τ, z and coordinates σ (σ ≥ 1), τ (1 ≥ τ ≥ −1), z (figure 1). The magnetic helix is formed
by winding a wire around an (imaginary) elliptical cylinder with fixed values of σ and parameter c, such
that cσ and 2c are equal to the long half-axis and the distance between the foci of the cylinder’s elliptical
cross-section. We assume the pitch of the helix to be negligible compared to both cσ and 2c. The turns
of the helix are orthogonal to the cylinder’s axis. The wire diameter is assumed to be much smaller than
the pitch of the helix, so that any interaction between neighbouring turns of the helix could be excluded.
The Cartesian coordinates x, y, z are expressed in terms of σ , τ , z as

x = cστ , y2 = c2(σ 2 − 1)(1 − τ 2), and z = z. (2.1)
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To describe dynamics of the magnetization M(r, t) in the helix, we will use the Landau–Lifshitz

equation [11,12]

∂M
∂t

= −g[M × (β(Mτ )τ + α�M)], (2.2)

where β is the uniaxial anisotropy constant, α is the exchange constant, and g is the gyromagnetic ratio.
There is no external magnetic field applied to the helix. The easy magnetization axis is always directed
along the nanowire axis, which coincides with τ. Indeed, as shown in [9,60,61], the angle of inclination
of the magnetization from the wire direction is proportional to the wire torsion, provided the radius
of curvature is greater than the exchange length, which is the case here. The torsion scales with the
helix pitch and is therefore approximately equal to zero under our assumptions. Our calculations are
performed in the exchange approximation, i.e. neglecting magnetostatic energy (except perhaps its part
that could be accounted for within the uniaxial anisotropy constant β). This is justified for spin waves
with wavelength of the order of the exchange length, which is also the length scale at which the exchange-
driven geometrical anisotropy from [6,7] becomes important.

Let us consider small deviations of the magnetization m(r,t) (|m| � M0, where M0 is the saturation
magnetization) from the ground state (i.e. the magnetization along the nanowire axis M0τ)

M(r, t) = M0τ + m(r, t), [M(r, t)]2 = M2
0, m ⊥ τ . (2.3)

Linearizing equation (2.2) using m(r,t) as a small parameter, we obtain

∂m
∂t

= −g[M0τ × α�m + m × βM0τ + m × αM0�τ ]. (2.4)

The infinitely small pitch of the helix (and so, the vanishing torsion of the wire) allows us to neglect z
derivatives in the Laplacian operator in equation (2.4), which therefore becomes [62]

�m = σ
1

c2(σ 2 − τ 2)2

⎡
⎢⎣ (σ 2 − τ 2)(1 − τ 2) d2

dτ 2 mσ (τ )

−τ (σ 2 − τ 2) d
dτ

mσ (τ ) − (τ 2 + σ 2 − 1)mσ (τ )

⎤
⎥⎦

+ τ
1

c2(σ 2 − τ 2)2

[
2σ

√
(σ 2 − 1)(1 − τ 2)

d
dτ

mσ (τ ) − (τ 2 + σ 2 − 1)M0

]

+ z
1

c2(σ 2 − τ 2)

[
(1 − τ 2)

d2

dτ 2 mz(τ ) − τ
d

dτ
mz(τ )

]
, (2.5)

where mσ (τ ) and mz(τ ) are the projections of the dynamic magnetization upon the basis vectors σ and z
of the curvilinear coordinate system

m = mσ (τ )σ + mz(τ )z, (2.6)

and mτ τ = 0.
Representing the dynamic magnetization as m(r, t) = m(r) exp{iωt}, substituting τ = cos ϕ

(−∞ < ϕ < +∞) and taking into account equations (2.5) and (2.6), we can write equation (2.4) in the
elliptical coordinates as

z : α
d2mσ (ϕ)

dϕ2 = βc2(σ 2 − cos2ϕ)mσ (ϕ) + iΩc2(σ 2 − cos2ϕ)mz(ϕ)

and σ : α
d2mz(ϕ)

dϕ2 = βc2(σ 2 − cos2ϕ)mz(ϕ) − α
(σ 2 − 1 + cos2ϕ)

(σ 2 − cos2ϕ)
mz(ϕ) − iΩc2(σ 2 − cos2ϕ)mσ (ϕ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

where Ω = ω/gM0. The limiting case of a circular helix is obtained from (2.7) by allowing σ → ∞, c → 0,
cσ → ρ, so that

z : iΩmz(ϕ) = α

ρ2
d2mρ (ϕ)

dϕ2 − βmρ (ϕ)

and ρ : iΩmρ (ϕ) = − α

ρ2
d2mz(ϕ)

dϕ2 +
(

β − α

ρ2

)
mz(ϕ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.8)

which coincides with the corresponding equations from [6].
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3. Calculation of the magnonic dispersion relation
To calculate the magnonic dispersion relation of spin waves in the nanowire, it is useful to rewrite
equations (2.7) in the matrix form

Ĥμ = 0, (3.1)

where the dynamic magnetization (2.6) is written as a two-component column-vector

μ =
(

mσ (ϕ)
mz(ϕ)

)
= (mσ (ϕ) mz(ϕ))T, (3.2)

and the matrix operator Ĥ is

Ĥ =

⎛
⎜⎜⎜⎝

βc2

α
(σ 2 − cos2ϕ) − d2

dϕ2
iΩc2(σ 2 − cos2ϕ)

α

− iΩc2(σ 2 − cos2ϕ)
α

βc2

α
(σ 2 − cos2ϕ) − (σ 2 − 1 + cos2ϕ)

(σ 2 − cos2ϕ)
− d2

dϕ2

⎞
⎟⎟⎟⎠ . (3.3)

In view of applying the perturbation theory, we represent the operator (3.3) as a sum of two
components

Ĥ = Ĥ
0 + V̂, (3.4)

where Ĥ
0

is the operator corresponding to a circular helix

Ĥ
0 =

⎛
⎜⎜⎜⎝

βc2σ 2

α
− d2

dϕ2
iΩc2σ 2

α

− iΩc2σ 2

α

(
βc2σ 2

α
− 1

)
− d2

dϕ2

⎞
⎟⎟⎟⎠ , (3.5)

and V̂ is a perturbation due to the ellipticity of the helix

V̂ = c2cos2ϕ

α

(
−β −iΩ
iΩ −β

)
+
⎛
⎝0 0

0 − 2cos2ϕ − 1
σ 2 − cos2ϕ

⎞
⎠ . (3.6)

Furthermore, instead of parameters c and σ from (2.1), we introduce parameters c and ρ that have
dimensions of length and are connected via relations

cσ = ρ,
(
σ = ρ

c

)
. (3.7)

Then, introducing notation

δβ = α

ρ2 , (3.8)

we obtain from (3.5) for Ĥ
0

Ĥ
0 =
⎛
⎝β − δβ d2

dϕ2 iΩ

−iΩ (β − δβ) − δβ d2

dϕ2

⎞
⎠ , (3.9)

and from (3.6) for V̂

V̂ = Ecos2ϕ

(
−β −iΩ
iΩ −β

)
+ δβ

⎛
⎝0 0

0 1 − 1 − Esin2ϕ

1 − Ecos2ϕ

⎞
⎠ , (3.10)

where E = c2/ρ2 = 1/σ 2.
As mentioned earlier, we aim to derive the spectrum of spin waves in an elliptical helix considering

its eccentricity as a perturbation relative to a circular helix. In this approach, quantity ε = E/2 � 1 is
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considered as a small parameter of the perturbation theory. The problem can then be reformulated as
one of finding the spectrum of equation (3.1) with Ĥ given by

Ĥ = Ĥ
0 − εV̂′, (3.11)

where with notations

K = β

δβ
, W = Ω

δβ
(3.12)

Ĥ
0

has form

Ĥ
0 =

⎛
⎜⎜⎝

K − d2

dϕ2 iW

−iW (K − 1) − d2

dϕ2

⎞
⎟⎟⎠ , (3.13)

and the perturbation operator in linear in ε approximation is obtained from (3.10) as

V̂′ = V̂0 + V̂1 cos(2ϕ), where V̂0 =
(

K iW
−iW K

)
and V̂1 =

(
K iW

−iW K + 2

)
. (3.14)

The eigenfunctions of Ĥ
0

have the form of plane waves

μ(0) =
(

m(0)
σ

m(0)
z

)
exp{ikϕ}, (3.15)

where m(0)
σ and m(0)

z are wave amplitudes that define the spin-wave polarization. The spectrum of the
spin waves is

W2 = (K + k2) (K − 1 + k2), (3.16)

which coincides with the corresponding results from [6,7].
Owing to the periodicity of the perturbation operator (the period of which is π), the spectrum and

eigenfunctions of the problem are also periodic. Hence, let us introduce a one-dimensional reciprocal
lattice kn = 2n, n is integer, so that the boundaries of the first Brillouin zone correspond to Q = ±1. The
following calculation is then performed using the standard perturbation theory from [63].

The states near the centre (small k values) and boundaries (k ≈ Q) of the Brillouin zone are affected
by the perturbation (3.14) differently. In the former case (Brillouin zone centre), the main contribution is
due to the constant term in (3.14), in which case we obtain from equation (3.16)

W2(1 − ε)2 = (K(1 − ε) + k2) (K(1 − ε) − 1 + k2) (3.16a)

or

W2 ≈ (K + k2) (K + k2 − 1) + ε

(
2k2(K + k2 − 1) − K

2

)
. (3.16b)

For the case of k ≈ Q, the eigenfunctions of operator Ĥ given by (3.11) (and therefore the solutions of

equation (3.1)) can be found via expansion in terms of eigenfunctions of the unperturbed operator Ĥ
0

given by (3.13)

μ =
(

m(k)
σ

m(k)
z

)
exp{ikϕ} +

(
m(k+q)

σ

m(k+q)
z

)
exp{i(k + q)ϕ}, (3.17)

where q = −2 is a reciprocal lattice vector. Following [63], we substitute expansion (3.17) into equation
(3.1), multiply the result by exp{−ikϕ} and then by exp{−i(k + q)ϕ}, and act on the result by integral
operator 1/π

∫π
0 . . . dϕ, to obtain the following system of equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
π

∫π

0
e−ikϕ(Ĥ

0 − εV̂′)eikϕdϕ ·
(

m(k)
σ

m(k)
z

)
+

∫π

0
e−ikϕ(Ĥ

0 − εV̂′)ei(k+q)ϕdϕ ·
(

m(k+q)
σ

m(k+q)
z

)
= 0

1
π

∫π

0
e−i(k+q)ϕ(Ĥ

0 − εV̂′)eikϕdϕ ·
(

m(k)
σ

m(k)
z

)
+

∫π

0
e−i(k+q)ϕ(Ĥ

0 − εV̂′)ei(k+q)ϕdϕ ·
(

m(k+q)
σ

m(k+q)
z

)
= 0.

(3.18)
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This is a homogeneous system of linear (with respect to spin-wave amplitudes m(k)

σ , m(k)
z , m(k+q)

σ ,

m(k+q)
z ) equations that can be written in matrix form as

T̂

⎛
⎜⎜⎜⎜⎜⎝

m(k)
σ

m(k)
z

m(k+q)
σ

m(k+q)
z

⎞
⎟⎟⎟⎟⎟⎠= 0. (3.19)

This system has non-trivial solutions if and only if its determinant is equal to zero

det T̂ = 0. (3.20)

Taking into account that the perturbation potential (3.14) is a periodic function with period π,
solutions of this equation for k = 1 (i.e. for the Brillouin zone boundary) and q = −2 (reciprocal lattice
vector) will define the frequency boundaries W± and size �W = W+ − W− of the magnonic band gap
in the spin-wave spectrum.

So, introducing notation

Ω̃ = W2

K(K + 1)
(3.21)

equation (3.20) becomes

Ω̃2 − 2BΩ̃ + C = 0, (3.22)

where the coefficients in linear in ε approximation are B ≈ 1 + (ε/(K + 1)), C ≈ 1 − (2Kε/(K + 1)).
Solutions of equation (3.22) in the lowest order in ε are

Ω̃± ≈ 1 ±
√

2ε. (3.23)

So, we finally obtain for the boundaries of the band gap

W± ≈
√

K(K + 1)
⌊

1 ±
√

ε

2

⌋
, (3.24)

and for the size of the magnonic band gap

�Ω =
√

β(β + δβ)
√

2ε, (3.25)

or taking into account notations introduced earlier in (2.7), (3.7), (2.8), (3.10),

�ω = gM0
c
ρ

√
β

(
β + α

ρ2

)
. (3.26)

4. Discussion
Owing to technological reasons, the radius of curvature of magnetic nanowires can hardly be made
comparable or smaller than the exchange length, which is of the order of 10 nm for most popular
magnonic materials, such as permalloy or yttrium-iron garnet (YIG). Moreover, the radius of curvature
is actually required to be greater than the exchange length to ensure stability of the magnetization along
the wire length [6,8,9]. So the curvature-induced anisotropy should always be δβ = α/ρ2 < 1. For the sake
of an estimate, we can take the uniaxial anisotropy strength to be β ≈ 2π, i.e. about the strength of the
shape anisotropy in a straight nanowire. Thus, we can see that δβ should generally be expected to be
much smaller than β. Then, equation (3.26) allows us to estimate the band gap size as

�ω = c
ρ

ω0, (4.1)

where ω0 = βgM0 is the frequency of the uniform ferromagnetic resonance in a straight nanowire.
Remarkably, this result does not depend on the exchange parameter but is only determined by the
aspect ratio of the helix. This suggests that the band gap is of topological origin, which is similar to
the topological modulation of the dispersion of a quantum-mechanical electron moving along a curved
path [3–5].
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The size of the first allowed magnonic band can be estimated as

ω1 = ω0

(√
1 + δβ

β
−
√

1 − δβ

β

)
≈ α

ρ2 ω0, (4.2)

which depends upon both the exchange parameter and the curvature of the nanowire. The ratio of the
first band gap to the first allowed band sizes is

�ω

ω1
≈ cρ

α
. (4.3)

The width ratio of the magnonic bands and band gaps is a key characteristic of magnonic crystals [64–66].
Equations (4.1–4.3) demonstrate that the magnonic band gap spectrum of elliptical helices studied here
can be tailored within a wide range, in accordance with conclusions of [6]. Both c and ρ either should or
can easily be imagined to exceed the exchange length. For the sake of an estimate, one could take 20 nm,
100 nm, 10 GHz and 100 nm2 for c, ρ, ω0/2π, and α, respectively. This would yield 2 and 0.1 GHz for the
first magnonic band gap and allowed band, respectively. The essentially flat first allowed band is due to
the relatively small group velocity of exchange spin waves of long wavelength, pointing to the lack of
the magneto-dipole field in our formalism.

In terms of experimental observation of the peculiar magnonic spectrum described above, one would
need to overcome the following two major obstacles. Firstly, the helix needs to be fabricated from a
magnetic material in which the spin-wave propagation length would exceed the length of a few turns
of the helix [64,66]. Secondly, the effects could be masked by those due to the inherent non-uniformity
of the micromagnetic configurations and associated magnonic index in realistic samples [25,55,67,68].
The experimental challenges are, however, common for the entire field of nano-magnonics [69] and
will hopefully be overcome eventually. On the theoretical side, it would be interesting to generalize the
calculations to the case of dipole-exchange spin waves [12] and to include the effects associated with the
torsion, e.g. following the approach laid out in [8,9,60,61,70].

5. Conclusion
In summary, we have shown that the spin-wave spectrum of an elliptical helix is characterized by the
presence of a magnonic band gap. The size of the band gap has been calculated using the perturbation
theory and shown to scale as the square root of the eccentricity, or the ratio of the inter-foci distance to
the long half-axis of the ellipses forming the helix. Curved magnonic waveguides of the kind considered
here could be used as structural elements of future three-dimensional magnonic architectures.

Data accessibility. All data related to this research are contained in the manuscript.
Authors’ contributions. V.V.K. and A.N.K. conceived the project. A.V.G., V.S.T., A.N.K. and V.V.K. performed the
calculations. A.V.G., A.N.K. and V.V.K. interpreted the results and wrote the manuscript. All authors gave final
approval for publication.
Competing interests. The authors declare no competing interests.
Funding. This research has received funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no. 247556 (NoWaPhen), the European Union’s Horizon 2020 research and
innovation program under Marie Skłodowska-Curie grant Agreement no. 644348 (MagIC).
Acknowledgements. The authors also gratefully acknowledge assistance of L. Pokhyl at the initial stages of the
calculations.

References
1. Landau LD, Lifshitz EM. 1975 The classical theory of

fields. Oxford, UK: Butterworth-Heinemann.
2. da Costa RCT. 1981 Quantummechanics of a

constrained particle. Phys. Rev. A 23, 1982–1987.
(doi:10.1103/PhysRevA.23.1982)

3. Magarill LI, Romanov DA, Chaplik AV. 2000
Low-dimensional electrons in curvilinear
nanostructures. Uspekhi Fizich. Nauk 170, 325.
(doi:10.3367/UFNr.0170.200003i.0325)

4. Magarill LI, Chaplik AV, Entin MV. 2005 Spectrum
and kinetics of electrons in curved nanostructures.

Phys. Usp. 48, 953–958. (doi:10.1070/PU2005v048
n09ABEH005730)

5. Kibis OV, Malevannyy SV, Huggett L, Parfitt DGW,
Portnoi ME. 2005 Superlattice properties of helical
nanostructures in a transverse electric field.
Electromagnetics 25, 425–435. (doi:10.1080/
02726340590957416)

6. Tkachenko VS, Kuchko AN, Dvornik M, Kruglyak VV.
2012 Propagation and scattering of spin waves in
curved magnonic waveguides. Appl. Phys. Lett. 101,
152402. (doi:10.1063/1.4757994)

7. Tkachenko VS, Kuchko AN, Kruglyak VV. 2013 An
effect of the curvature induced anisotropy on the
spectrum of spin waves in a curved magnetic
nanowire. Low Temp. Phys. 39, 163–166.
(doi:10.1063/1.4792133)

8. Sheka DD, Kravchuk VP, Gaididei Y. 2015 Curvature
effects in statics and dynamics of low dimensional
magnets. J. Phys. A: Math. Theor. 48, 125202.
(doi:10.1088/1751-8113/48/12/125202)

9. Sheka DD, Kravchuk VP, Yershov KV, Gaididei Y. 2015
Torsion-induced effects in magnetic nanowires.

 on September 1, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1103/PhysRevA.23.1982
http://dx.doi.org/10.3367/UFNr.0170.200003i.0325
http://dx.doi.org/10.1070/PU2005v048n09ABEH005730
http://dx.doi.org/10.1070/PU2005v048n09ABEH005730
http://dx.doi.org/10.1080/02726340590957416
http://dx.doi.org/10.1080/02726340590957416
http://dx.doi.org/10.1063/1.4757994
http://dx.doi.org/10.1063/1.4792133
http://dx.doi.org/10.1088/1751-8113/48/12/125202
http://rsos.royalsocietypublishing.org/


8

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172285

................................................
Phys. Rev. B 92, 054417. (doi:10.1103/PhysRevB.92.
054417)

10. Streubel R, Fischer P, Kronast F, Kravchuk VP, Sheka
DD, Gaididei Y, Schmidt OG, Makarov D. 2016
Magnetism in curved geometries. J. Phys. D: Appl.
Phys. 49, 363001. (doi:10.1088/0022-3727/49/
36/363001)

11. Akhiezer AI, Bar’yakhtar VG, Peletminskii SV. 1968
Spin waves. Amsterdam, The Netherlands:
North-Holland.

12. Gurevich AG, Melkov GA. 1996Magnetization
oscillations and waves. Boca Raton, FL: CRC
Press.

13. Bance S, Schrefl T, Hrkac G, Goncharov A, Allwood
DA, Dean J. 2008 Micromagnetic calculation of spin
wave propagation for magnetologic devices. J. Appl.
Phys. 103, 07E735. (doi:10.1063/1.2836791)

14. Clausen P, Vogt K, Schultheiss H, Schäfer S, Obry B,
Wolf G, Pirro P, Leven B, Hillebrands B. 2011 Mode
conversion by symmetry breaking of propagating
spin waves. Appl. Phys. Lett. 99, 162505.
(doi:10.1063/1.3650256)

15. Vogt K, Schultheiss H, Jain S, Pearson JE, Hoffmann
A, Bader SD, Hillebrands B. 2012 Spin waves turning
a corner. Appl. Phys. Lett. 101, 042410. (doi:10.1063/
1.4738887)

16. Wang Q, Zhong ZY, Jin LC, Tang XL, Bai FM, Zhang
HB, Beach GSD. 2013 Design of nanostrip magnonic
crystal waveguides with a single magnonic band
gap. J. Magn. Magn. Mater. 340, 23–26.
(doi:10.1016/j.jmmm.2013.03.017)

17. Dvornik M, Au Y, Kruglyak VV. 2013 Micromagnetic
simulations in magnonics. Top. Appl. Phys.
125, 101–115. (doi:10.1007/978-3-642-
30247-3_8)

18. Xing X, Yu Y, Li S, Huang X. 2013 How do spin waves
pass through a bend? Sci. Rep. 3, 257202.
(doi:10.1038/srep02958)

19. Klos JW, Kumar D, Krawczyk M, Barman A. 2013
Magnonic band engineering by intrinsic and
extrinsic mirror symmetry breaking in antidot
spin-wave waveguides. Sci. Rep. 3, 264001.
(doi:10.1038/srep02444)

20. Bocklage L, Motl-Ziegler S, Topp J, Matsuyama T,
Meier G. 2014 Spin waves and domain wall modes
in curved magnetic nanowires. J. Phys. Condens.
Matter 26, 266003. (doi:10.1088/0953-8984/26/
26/266003)

21. Kumar N, Venkat G, Prabhakar A. 2014 An iterative
solution for spin-wave dispersion in a magnonic
ring. IEEE Trans. Magn. 50, 1300306.
(doi:10.1109/TMAG.2014.2317458)

22. Sheshukova SE, Beginin EN, Sadovnikov AV,
Sharaevsky YP, Nikitov SA. 2014 Multimode
propagation of magnetostatic waves in a
width-modulated yttrium-iron-garnet waveguide.
IEEE Magn. Lett. 5, 1–4. (doi:10.1109/LMAG.2014.
2365431)

23. Xing DS, Yang H, Cao YJ. 2015 Waveguide properties
in two-dimensional magnonic crystals with line
defects. J. Magn. Magn. Mater. 377, 286–290.
(doi:10.1016/j.jmmm.2014.10.119)

24. Xing X, Yin W, Wang Z. 2015 Excitation of
antisymmetric modes and modulated propagation
of spin waves in bent magnonic waveguides.
J. Phys. D: Appl. Phys. 48, 215004. (doi:10.1088/
0022-3727/48/21/215004)

25. Davies CS et al. 2015 Towards graded-index
magnonics: steering spin waves in magnonic

networks. Phys. Rev. B 92, 67. (doi:10.1103/
PhysRevB.92.020408)

26. Kruglyak VV, Demokritov SO, Grundler D. 2010
Magnonics. J. Phys. D: Appl. Phys. 43, 264001.
(doi:10.1088/0022-3727/43/26/264001)

27. Zaspel CE, Ivanov BA. 2005 Magnon modes in
permalloy nanorings. J. Magn. Magn. Mater. 286,
366–369. (doi:10.1016/j.jmmm.2004.09.093)

28. Shindou R, Matsumoto R, Murakami S. 2013
Topological chiral magnonic edge mode in a
magnonic crystal. Phys. Rev. B 87, 174427.
(doi:10.1103/PhysRevB.87.174427)

29. Chai GZ, Wang XH, Si MS, Xue DS. 2013 Adjustable
microwave permeability of nanorings: a
micromagnetic investigation. Phys. Lett. A 377,
1491–1494. (doi:10.1016/j.physleta.2013.04.027)

30. Mamica S. 2013 Spin-wave spectra and stability of
the in-plane vortex state in two-dimensional
magnetic nanorings. J. Appl. Phys. 114, 233906.
(doi:10.1063/1.4851695)

31. Mamica S. 2013 Stabilization of the in-plane vortex
state in two-dimensional circular nanorings. J. Appl.
Phys. 113, 093901. (doi: 10.1063/1.4794004)

32. Mamica S, Levy J-CS, Krawczyk M. 2014 Effects of
the competition between the exchange and dipolar
interactions in the spin-wave spectrum of
two-dimensional circularly magnetized nanodots.
J. Phys. D: Appl. Phys. 47, 015003. (doi:10.1088/0022-
3727/47/1/015003)

33. Ekomasov EG, Murtazin RR, Nazarov VN. 2015
Excitation of magnetic inhomogeneities in
three-layer ferromagnetic structure with different
parameters of the magnetic anisotropy and
exchange. J. Magn. Magn. Mater. 385, 217–221.
(doi:10.1016/j.jmmm.2015.03.019)

34. Li Z-X, Wang XG, Wang D-W, Nie Y-Z, Tang W, Guo
G-H. 2015 Reconfigurable magnonic crystal
consisting of periodically distributed domain walls
in a nanostrip. J. Magn. Magn. Mater. 388, 10–15.
(doi:10.1016/j.jmmm.2015.04.012)

35. Garcia-Sanchez F, Borys P, Soucaille R, Adam J-P,
Stamps RL, Kim J-V. 2015 Narrowmagnonic
waveguides based on domain walls. Phys. Rev. Lett.
114, 419. (doi:10.1103/PhysRevLett.114.247206)

36. Gorobets YI, Kulish VV. 2015 Dipole-exchange spin
waves in nanotubes composed of uniaxial
ferromagnets with ‘easy-plane’ and ‘easy-axis’
anisotropies. Low Temp. Phys. 41, 517–521.
(doi:10.1063/1.4927076)

37. Adolff CF, Hänze M, Pues M, Weigand M, Meier G.
2015 Gyrational modes of benzenelike magnetic
vortex molecules. Phys. Rev. B 92, 133.
(doi:10.1103/PhysRevB.92.024426)

38. Mozooni B, McCord J. 2015 Direct observation of
closure domain wall mediated spin waves. Appl.
Phys. Lett. 107, 042402. (doi:10.1063/1.4927598)

39. Vasiliev SV, Kruglyak VV, Sokolovskii ML, Kuchko
AN. 2007 Spin wave interferometer employing a
local nonuniformity of the effective magnetic field.
J. Appl. Phys. 101, 113919. (doi:10.1063/1.2740339)

40. Lee K-S, Kim S-K. 2008 Conceptual design of spin
wave logic gates based on a Mach–Zehnder-type
spin wave interferometer for universal logic
functions. J. Appl. Phys. 104, 053909. (doi:10.1063/
1.2975235)

41. Demidov VE, Urazhdin S, Demokritov SO. 2009
Control of spin-wave phase and wavelength by
electric current on the microscopic scale. Appl. Phys.
Lett. 95, 262509. (doi:10.1063/1.3279152)

42. Kim S-K. 2010 Micromagnetic computer simulations
of spin waves in nanometre-scale patterned
magnetic elements. J. Phys. D: Appl. Phys. 43,
264004. (doi:10.1088/0022-3727/43/26/264004)

43. Dvornik M, Kuchko AN, Kruglyak VV. 2011
Micromagnetic method of s-parameter
characterization of magnonic devices. J. Appl. Phys.
109, 07D350. (doi:10.1063/1.3562519)

44. Mukherjee SS, Kwon JH, Jamali M, Hayashi M, Yang
H. 2012 Interference-mediated modulation of spin
waves. Phys. Rev. B 85, 224408. (doi:10.1103/
PhysRevB.85.224408)

45. Krawczyk M, Grundler D. 2014 Review and prospects
of magnonic crystals and devices with
reprogrammable band structure. J. Phys.: Condens.
Matter 26, 123202. (doi:10.1088/0953-8984/26/
12/123202)

46. Kozhevnikov A, Gertz F, Dudko G, Filimonov Y,
Khitun A. 2015 Pattern recognition with magnonic
holographic memory device. Appl. Phys. Lett. 106,
142409. (doi:10.1063/1.4917507)

47. Xing XJ, Jin QL, Li SW. 2015 Frequency-selective
manipulation of spin waves: micromagnetic texture
as amplitude valve and mode modulator. New J.
Phys. 17, 023020. (doi:10.1088/1367-2630/17/
2/023020)

48. Nikitin AA, Ustinov AB, Semenov AA, Chumak AV,
Serga AA, Vasyuchka VI, Lahderanta E, Kalinikos BA,
Hillebrands B. 2015 A spin-wave logic gate based on
a width-modulated dynamic magnonic crystal.
Appl. Phys. Lett. 106, 102405. (doi:10.1063/
1.4914506)

49. Davies CS, Kruglyak VV. 2015 Graded-index
magnonics. Low Temp. Phys. 41, 760–766.
(doi:10.1063/1.4932349)

50. Elyasi M, Bhatia CS, Qiu CW, Yang H. 2016 Cloaking
the magnons. Phys. Rev. B 93, 1109. (doi:10.1103/
PhysRevB.93.104418)

51. Xing XJ, Zhou Y. 2016 Fiber optics for spin waves.
NPG Asia Mater. 8, e246. (doi:10.1038/am.
2016.25)

52. Yu WC, Lan J, Wu RQ, Xiao J. 2016 Magnetic Snell’s
law and spin-wave fiber with Dzyaloshinskii-Moriya
interaction. Phys. Rev. B 94, 140410.
(doi:10.1103/PhysRevB.94.140410)

53. Gruszecki P, Mailyan M, Gorobets O, Krawczyk M.
2017 Goos-Hänchen shift of a spin-wave beam
transmitted through anisotropic interface between
two ferromagnets. Phys. Rev. B 95, 8.
(doi:10.1103/PhysRevB.95.014421)

54. Ekomasov EG, Gumerov AM, Kudryavtsev RV. 2017
Resonance dynamics of kinks in the sine-Gordon
model with impurity, external force and damping.
J. Comput. Appl. Math. 312, 198–208. (doi:10.1016/
j.cam.2016.04.013)

55. Sadovnikov AV, Davies CS, Kruglyak VV, Romanenko
DV, Grishin SV, Beginin EN, Sharaevskii YP, Nikitov
SA. 2017 Spin wave propagation in a uniformly
biased curved magnonic waveguide. Phys.
Rev. B 96, 319. (doi:10.1103/PhysRevB.96.060401)

56. Sadovnikov AV, Davies CS, Grishin SV, Kruglyak VV,
Romanenko DV, Sharaevskii YP, Nikitov SA. 2015
Magnonic beam splitter: the building block of
parallel magnonic circuitry. Appl. Phys. Lett. 106,
192406. (doi:10.1063/1.4921206)

57. Al-Wahsh H, Akjouj A, Djafari-Rouhani B,
Dobrzynski L. 2011 Magnonic circuits and crystals.
Surf. Sci. Rep. 66, 29–75. (doi:10.1016/j.surfrep.2010.
10.002)

 on September 1, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1103/PhysRevB.92.054417
http://dx.doi.org/10.1103/PhysRevB.92.054417
http://dx.doi.org/10.1088/0022-3727/49/36/363001
http://dx.doi.org/10.1088/0022-3727/49/36/363001
http://dx.doi.org/10.1063/1.2836791
http://dx.doi.org/10.1063/1.3650256
http://dx.doi.org/10.1063/1.4738887
http://dx.doi.org/10.1063/1.4738887
http://dx.doi.org/10.1016/j.jmmm.2013.03.017
http://dx.doi.org/10.1007/978-3-642-30247-3_8
http://dx.doi.org/10.1007/978-3-642-30247-3_8
http://dx.doi.org/10.1038/srep02958
http://dx.doi.org/10.1038/srep02444
http://dx.doi.org/10.1088/0953-8984/26/26/266003
http://dx.doi.org/10.1088/0953-8984/26/26/266003
http://dx.doi.org/10.1109/TMAG.2014.2317458
http://dx.doi.org/10.1109/LMAG.2014.2365431
http://dx.doi.org/10.1109/LMAG.2014.2365431
http://dx.doi.org/10.1016/j.jmmm.2014.10.119
http://dx.doi.org/10.1088/0022-3727/48/21/215004
http://dx.doi.org/10.1088/0022-3727/48/21/215004
http://dx.doi.org/10.1103/PhysRevB.92.020408
http://dx.doi.org/10.1103/PhysRevB.92.020408
http://dx.doi.org/10.1088/0022-3727/43/26/264001
http://dx.doi.org/10.1016/j.jmmm.2004.09.093
http://dx.doi.org/10.1103/PhysRevB.87.174427
http://dx.doi.org/10.1016/j.physleta.2013.04.027
http://dx.doi.org/10.1063/1.4851695
http://dx.doi.org/10.1063/1.4794004
http://dx.doi.org/10.1088/0022-3727/47/1/015003
http://dx.doi.org/10.1088/0022-3727/47/1/015003
http://dx.doi.org/10.1016/j.jmmm.2015.03.019
http://dx.doi.org/10.1016/j.jmmm.2015.04.012
http://dx.doi.org/10.1103/PhysRevLett.114.247206
http://dx.doi.org/10.1063/1.4927076
http://dx.doi.org/10.1103/PhysRevB.92.024426
http://dx.doi.org/10.1063/1.4927598
http://dx.doi.org/10.1063/1.2740339
http://dx.doi.org/10.1063/1.2975235
http://dx.doi.org/10.1063/1.2975235
http://dx.doi.org/10.1063/1.3279152
http://dx.doi.org/10.1088/0022-3727/43/26/264004
http://dx.doi.org/10.1063/1.3562519
http://dx.doi.org/10.1103/PhysRevB.85.224408
http://dx.doi.org/10.1103/PhysRevB.85.224408
http://dx.doi.org/10.1088/0953-8984/26/12/123202
http://dx.doi.org/10.1088/0953-8984/26/12/123202
http://dx.doi.org/10.1063/1.4917507
http://dx.doi.org/10.1088/1367-2630/17/2/023020
http://dx.doi.org/10.1088/1367-2630/17/2/023020
http://dx.doi.org/10.1063/1.4914506
http://dx.doi.org/10.1063/1.4914506
http://dx.doi.org/10.1063/1.4932349
http://dx.doi.org/10.1103/PhysRevB.93.104418
http://dx.doi.org/10.1103/PhysRevB.93.104418
http://dx.doi.org/10.1038/am.2016.25
http://dx.doi.org/10.1038/am.2016.25
http://dx.doi.org/10.1103/PhysRevB.94.140410
http://dx.doi.org/10.1103/PhysRevB.95.014421
http://dx.doi.org/10.1016/j.cam.2016.04.013
http://dx.doi.org/10.1016/j.cam.2016.04.013
http://dx.doi.org/10.1103/PhysRevB.96.060401
http://dx.doi.org/10.1063/1.4921206
http://dx.doi.org/10.1016/j.surfrep.2010.10.002
http://dx.doi.org/10.1016/j.surfrep.2010.10.002
http://rsos.royalsocietypublishing.org/


9

rsos.royalsocietypublishing.org
R.Soc.opensci.5:172285

................................................
58. Ignatchenko VA, Laletin ON. 2004 Fiz. Tverd. Tela (St.

Petersburg) 46, 2217. [Waves in a superlattice with
arbitrary interlayer boundary thickness. Phys. Solid
State 46, 2292–2300. (doi:10.1134/1.1841396)
(2004)].

59. Nikitov SA et al. 2015 Magnonics: a new research
area in spintronics and spin wave electronics. Usp.
Fiz. Nauk 58, 1099–1128. [Phys. Uspekhi 58,
1002 (2015)]. (doi:10.3367/UFNr.0185.201510m.
1099)

60. Pylypovskyi OV, Sheka DD, Kravchuk VP, Yershov KV,
Makarov D, Gaididei Y. 2016 Rashba torque
driven domain wall motion in magnetic helices. Sci.
Rep. 6, 203. (doi:10.1038/srep23316)

61. Yershov KV, Kravchuk VP, Sheka DD, Gaididei Y. 2016
Curvature and torsion effects in spin-current driven
domain wall motion. Phys. Rev. B 93, 373.
(doi:10.1103/PhysRevB.93.094418)

62. Morse PM, Feshbach H. 1953Methods of theoretical
physics. Part I. New York, NY: McGraw-Hill
Science/Engineering/Math.

63. Harrison WA. 1966 Pseudopotentials in the theory of
metals. New York, NY: Benjamin.

64. Kruglyak VV, Davies CS, Tkachenko VS, Gorobets OY,
Gorobets YI, Kuchko AN. 2017 Formation of the band
spectrum of spin waves in 1D magnonic crystals
with different types of interfacial boundary
conditions. J. Phys. D Appl. Phys. 50, 094003.
(doi:10.1088/1361-6463/aa536c)

65. Tacchi S, Gubbiotti G, Madami M, Carlotti G.
2017 Brillouin light scattering studies of 2D
magnonic crystals. J. Phys. Condens. Matter
29, 073001. (doi:10.1088/1361-648X/29/7/
073001)

66. Chumak AV, Serga AA, Hillebrands B. 2017 Magnonic
crystals for data processing. J. Phys. D Appl.

Phys. 50, 244001. (doi:10.1088/1361-6463/
aa6a65)

67. Banerjee C, Choudhury S, Sinha J, Barman A. 2017
Pseudo-one-dimensional magnonic crystals for
high-frequency nanoscale devices. Phys. Rev. Appl.
8, 014036. (doi:10.1103/PhysRevApplied.8.014036)

68. Lara A, Moreno JR, Guslienko KY, Aliev FG. 2017
Information processing in patterned magnetic
nanostructures with edge spin waves. Sci. Rep. 7,
2927. (doi:10.1038/s41598-017-05737-8)

69. Grundler D. 2016 Nanomagnonics. J. Phys. D Appl.
Phys. 49, 391002. (doi:10.1088/0022-3727/49/39/
391002)

70. Gaididei Y, Goussev A, Kravchuk VP, Pylypovskyi OV,
Robbins JM, Sheka DD, Slastikov V, Vasylkevych S.
2017 Magnetization in narrow ribbons: curvature
effects. J. Phys. A Math. Theor. 50, 385401.
(doi:10.1088/1751-8121/aa8179)

 on September 1, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.3367/UFNr.0185.201510m.1099
http://dx.doi.org/10.3367/UFNr.0185.201510m.1099
http://dx.doi.org/10.1038/srep23316
http://dx.doi.org/10.1103/PhysRevB.93.094418
http://dx.doi.org/10.1088/1361-6463/aa536c
http://dx.doi.org/10.1088/1361-648X/29/7/073001
http://dx.doi.org/10.1088/1361-648X/29/7/073001
http://dx.doi.org/10.1088/1361-6463/aa6a65
http://dx.doi.org/10.1088/1361-6463/aa6a65
http://dx.doi.org/10.1103/PhysRevApplied.8.014036
http://dx.doi.org/10.1038/s41598-017-05737-8
http://dx.doi.org/10.1088/0022-3727/49/39/391002
http://dx.doi.org/10.1088/0022-3727/49/39/391002
http://dx.doi.org/10.1088/1751-8121/aa8179
http://rsos.royalsocietypublishing.org/

	Introduction
	Basic equations
	Calculation of the magnonic dispersion relation
	Discussion
	Conclusion
	References

