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Theory of linear spin wave emission from a Bloch domain wall
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We report an analytical theory of linear emission of exchange spin waves from a Bloch domain wall, excited
by a uniform microwave magnetic field. The problem is reduced to a one-dimensional Schrödinger-like equation
with a Pöschl-Teller potential and a driving term of the same profile. The emission of plane spin waves is observed
at excitation frequencies above a threshold value, as a result of a linear process. The height-to-width aspect ratio of
the Pöschl-Teller profile for a domain wall is found to correspond to a local maximum of the emission efficiency.
Furthermore, for a tailored Pöschl-Teller potential with a variable aspect ratio, particular values of the latter can
lead to enhanced or even completely suppressed emission.
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I. INTRODUCTION

Wave generation is both an essential topic in wave physics
and a prerequisite of any technology exploiting waves. Con-
ventionally, waves are excited using an antenna, with their
wavelength being limited by the antenna’s size. Alternatively,
we could use an inhomogeneity (either deliberately introduced,
or naturally occurring) in the medium and then apply a
uniform, oscillatory external field to generate a wave. Small-
wavelength excitations require equally small antennas or
inhomogeneities to generate them.

In magnonics [1–3], the study of spin waves, we are
fortunate that inhomogeneities with nanoscale dimensions
naturally occur in magnetic materials: domain walls. These
inhomogeneities are the transition regions between domains
of uniformly aligned magnetization, and can have dimensions
down to a few nanometers, depending on the material. Domain
walls have been studied in great detail, due to a number of
interesting properties: their magnetic field and current-driven
motion [4,5], their ability to channel spin waves [6–8], and
the unusual reflectionless behavior for spin waves passing
through them [9]. Recently, there have also been numerical
[10,11] and experimental [12,13] reports of pinned domain
walls generating spin waves, with wavelengths down to tens
of nanometers [14]. The origin of the observed spin wave
emission has typically been attributed to the domain wall
oscillations, generated by the applied microwave magnetic
field [10–13] or spin-polarized current [14,15].

In this work, we report an analytical theory that demon-
strates emission of exchange spin waves from a Bloch domain
wall driven by a uniform microwave magnetic field, as a result
of a linear process. The problem is reduced to that of the
Pöschl-Teller potential in a Schrödinger-like equation—an
exactly solvable model, of particular interest in quantum
mechanics [16] and optics [17,18]. This potential is mostly
known for its peculiar property of 100% transmission of
incident waves at any frequency, for certain parameters of the
potential [19]. While forming such a potential in other systems
is difficult, serendipitously the reflectionless Pöschl-Teller
potential exactly describes the graded magnonic index profile
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[20] due to a Bloch domain wall, allowing the peculiar behavior
to be both investigated and exploited in magnetic systems [21].
Furthermore, when the domain wall is driven by a uniform
microwave magnetic field, the Pöschl-Teller profile happens to
be present not only as the potential, but also as a driving term
in the obtained Schrödinger-like equation. Strikingly, when we
manipulate the aspect ratio of the profile from that of a domain
wall, we reveal novel effects on the waves in our system, which
are not present for the quantum-mechanical analog (which has
no driving term).

II. THEORETICAL MODEL

A thin film with infinite extent in the y-z plane contains
two antiparallel domains separated by a Bloch domain wall,
as shown in Fig. 1. The magnetic energy density W of this
system is [22,23]

W = α

2

(
∂M
∂y

)2

− β‖
2

(M · ẑ)2 + β⊥
2

(M · x̂)2 − h · M, (1)

where α is the exchange constant, β‖ and β⊥ are the constants
of the easy axis and easy plane anisotropies respectively, ẑ
and x̂ are unit vectors in the corresponding easy and hard
magnetization directions, and h = h exp(−iωt)ŷ is the driving
microwave magnetic field at frequency ω. Minimizing the
energy in spherical coordinates leads to the well-known profile
of a Bloch domain wall [24]

θ = 2 arctan
[
exp (y/λB)

]
, (2)

where θ is the polar angle and λB = √
α/(β‖ + β⊥) is the

domain wall width. The center of the domain wall is chosen
to be at y = 0. The dynamics of the system can be described
by the Landau-Lifshitz equation

∂M
∂t

= γ

(
M × δW

δM

)
, (3)

where γ is the gyromagnetic ratio, and for simplicity we
ignore damping. The magnetization can be written as M =
MS + m, where m is a small, time-dependent perturbation
to the static magnetization MS. Treating m and h as small
quantities, Eqs. (1) and (3) are linearized yielding three
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FIG. 1. The studied system: a thin film with two antiparallel
magnetic domains separated by a Bloch domain wall. The dotted
line indicates the domain wall center. The blue arrows represent the
static magnetization configuration MS, with its magnitude |MS| = M0

arbitrarily sized for clarity.

coupled differential equations—one for each magnetization
component.

It is convenient to carry out a coordinate transformation,
where the new primed reference frame rotates around the y

axis (thus y ′ = y) and the new z′ axis is set to point along the
static magnetization MS. In this frame, we are only concerned
with precession in the x ′-y ′ plane. So, Eq. (3) reduces further
to two coupled differential equations in m′ = (m′

x,m
′
y)T , the

time-dependent magnetization in the rotated frame,

1

αγM0

∂

∂t
m′ = iσ y

[
∂2

∂y2
− β‖

α
− β(y)

]
m′

+
(

0 0
β⊥
α

0

)
m′ +

(
h
α

0

)
, (4)

where σ y is the Pauli spin matrix and β(y) =
−(2/λ2

B) sech2(y/λB). Following the approach from [25], we
represent m′ as a sum of two dynamic contributions due to
the microwave excitation: (1) uniform background precession
m′

h, which is present irrespective of the presence of the domain
wall in the sample; (2) nonuniform propagating spin waves m′

β

excited due to the domain wall. Converting to the frequency
domain and denoting the Fourier transformed variables with a
tilde, we write the inhomogeneous equation in m̃′

β as

iσ yβ(y)m̃′
h = iσ y

[
∂2
y − β‖

α
− β(y)

]
m̃′

β

+
(

i

α

0
β⊥
α

i

α

)
m̃′

β, (5)

where the uniform precession m̃′
h is

m̃′
h = 1

−
2 + β‖(β‖ + β⊥)

( −i
h̃(ω)
(β‖ + β⊥)h̃(ω)

)
, (6)

and we have introduced the dimensionless frequency 
 =
ω/γM0. There are some important features of Eq. (5) to
notice. First, the term inside the square brackets resembles
the Schrödinger equation with Pöschl-Teller potential β(y)
[26–28]. Second, the driving term on the left-hand side also
contains β(y), which will modify our results compared to the
traditional Schrödinger equation with Pöschl-Teller potential.
Finally, the off-diagonal term β⊥/α, which only multiplies

m′
β,x , will lead to ellipticity in the magnetization, as expected

for a thin film.
We separate the solution of the homogeneous equation

corresponding to (5) into a product of a constant vector
amplitude and a scalar function of position,

m±′
β,G =

(
1

±i

√
1 − β⊥

α�±

)
ϕ(y) ≡ a±ϕ(y). (7)

The factor ϕ(y) is the well-known solution to the Schrödinger
equation with Pöschl-Teller potential well [16,25], with eigen-
values �±:

�± = 1

α

(
β⊥
2

± ξ

)
, ξ =

√
β2

⊥
4

+ 
2. (8)

We write ϕ(y) = C±
1 w±

1 + C±
2 w±

2 , where

w±
1 = [cosh(y/λB)]ik

±λB F [−ik±λB − 1,

−ik±λB + 2, − ik±λB + 1; ζ ], (9)

w±
2 = �(−ik±λB + 1)�(−ik±λB)

�(−ik±λB − 1)�(−ik±λB + 2)

× [cosh(y/λB)ζ ]ik
±λB F [−1,2,ik±λB + 1; ζ ]

− �(ik±λB+1)�(−ik±λB)

�(−1)�(2)
[cosh(y/λB)]ik

±λB

×F [−ik±λB − 1,−ik±λB + 2,−ik±λB + 1; ζ ].

(10)

F [a,b,c; ζ ] is the hypergeometric function with ζ = [1 −
tanh(y/λB)]/2, the wave numbers are k± = √−�± − (β‖/α),
and C±

1 and C±
2 are constants to be found using the boundary

conditions. We can see from our definition of �± in (8)
that only the k− solution can be real-valued, and only when

 >

√
β‖(β‖ + β⊥). We find that the k+ solution does affect

the form of the dynamic magnetization within the domain wall,
and so we retain both solutions.

Now, we can use the method of variation of parameters [29]
to find the solution to the inhomogeneous equation, as

m̃′
β =

∑
σ=+,−

aσ
{
Cσ

1 wσ
1 + Cσ

2 wσ
2 + wσ

1 f σ
1 (0,y)

−wσ
2 f σ

2 (0,y)
}
, (11)

with

f ±
1(2)(p,q) = −NA±

W±

∫ q

p

β(y)w±
2(1) dy ′,

N = − i
h̃(ω)

2ξ [−
2 + β‖(β‖ + β⊥)]
,

A± = ±
(

β⊥
2

+ β‖

)
− ξ,

W± = ik±

2ik±λB

�(−ik±λB + 1)�(−ik±λB)

�(−ik±λB − 1)�(−ik±λB + 2)
.

W+ and W− are the Wronskians for the k+ and k− solutions,
respectively [25].

Finally, to find C±
1 and C±

2 , we require that the magne-
tization m̃′

β tends to plane waves that propagate outwards
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FIG. 2. Projection of the magnetization vectors onto the x-y
plane, in the unrotated frame, for phase = 0 and (inset) phase = π .
The y position and orientation of the vectors are accurate, while the
static magnetization length has been arbitrarily reduced for clarity.

from the domain wall, i.e., limy→±∞{m̃′
β} ≈ S+(ω)e±ik+y +

S−(ω)e±ik−y . As before, we are using the convention that
superscripts relate to the two wave number solutions, while
here the ± sign in the exponentials relates to the ±∞ limits.
So, we find

C±
1(2) = f ±

1(2)(−∞(0),0(+∞)), (12a)

S±(ω) = a±

2ik±λB
f ±

1 (−∞, + ∞). (12b)

We now have the full solution for the magnetization m̃′
β ,

and therefore know the spin wave amplitude at the asymptotic
limits S±(ω). However, since k+ is always imaginary, we are
only concerned with the S−(ω) solution.

III. RESULTS AND DISCUSSION

We study the solutions obtained for a permalloy-like
sample;1 the corresponding width of the Bloch domain wall is
λB = 6 nm. Let us begin by considering the character of the
magnetization dynamics near the domain wall. To visualize the
dynamics, we convert our variables back into the laboratory
frame and plot them as arrows. The results are shown in
Fig. 2, and the full animation from different viewpoints is
provided in the Supplemental Material [30]. We can see that
the magnetization precession in the domain wall has a larger
amplitude than in the adjacent domains. Moreover, the domain
wall center, i.e., the position of the magnetization with the
largest x component, appears to move back and forth along
the y direction.

The apparent domain wall motion is not, however, the
source of the emitted spin waves. Rather, this motion is
the small amplitude precession given by the solution of the
linearized Landau-Lifshitz equation, and is of the same order

1We use the following parameters throughout this paper:
M0 = 800 erg G−1 cm−3, γ = 1.76 × 107 Hz Oe−1, α = 3.125 ×
10−12 cm2, β‖ = 0.1 (K = 32 × 103 erg cm−3), β⊥ = 10 (K = 32 ×
105 erg cm−3)

as the emitted spin waves. Indeed, the precessional modes
resulting from a linear theory must obey the superposition
principle, while the full nonlinear Landau-Lifshitz equation
would need to be solved to account for any interaction be-
tween different precessional modes. Examples of a nonlinear
generation of spin waves from a domain wall can be found
in, e.g., Refs. [10,31], where the domain wall oscillations at
frequency ω were observed to emit spin waves at twice the
frequency, i.e., 2ω. Our theory suggests that the spin wave
emission from domain walls, at a frequency equal to that of
the driving magnetic field [12,13] or spin-polarized current
[14], should rather be interpreted as a linear excitation due to
the magnetic inhomogeneity [32] (“graded magnonic index”
[20]) created by the domain wall, when excited by a uniform
magnetic field.

Through analyzing the behavior of the Pöschl-Teller poten-
tial with different parameters, we discover that it is actually
nontrivial that a domain wall emits spin waves. To elucidate
this, we refer to the theory describing the Pöschl-Teller
potential well for incident waves [19]—it is well-known
to have “special” values of height at which it becomes
reflectionless. If we write the profile as

βl(y) = − l

λ2
B

sech2

(
y

λB

)
, l = n(n + 1), (13)

the profiles that are reflectionless for incident waves can be
identified as those with integer n. We do not consider incoming
waves in this work, so we now use (12b) to investigate
how changing l affects the emission of spin waves from the
profile. In Fig. 3 we sweep l from negative values (which
represent a potential barrier—there are no solutions for n in
this case) through to positive values (a potential well, which
has corresponding values of n). We observe for the potential
well that at certain values of l, which correspond to even n, the
spin wave emission is zero, and the spin waves are confined
within the domain wall region. Furthermore, profiles with odd
n are local maxima. So, the presence of sech2(y/λB) in both
the potential and the driving term in (5) leads to a different
set of “special” values, corresponding to either strong wave

FIG. 3. Spin wave amplitude vs. l for potential barrier (l < 0)
and well (l > 0) for frequency f = 50 GHz, with the shape of the
potentials shown for l = −2 for the barrier (left inset) and l = 2 for
the well (right inset).
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FIG. 4. Amplitude of the spin waves generated by a Pöschl-Teller
potential well (solid lines) and potential barrier (dashed lines),
compared to the amplitude of uniform precession induced by the
external field (dotted lines), showing x ′ and y ′ components (colors
indicated on the graph). All quantities are normalized by the external
field h̃(ω). S−(ω) is a function of k− (bottom axis) and thus 
 (top
axis), and m̃h is only a function of 
.

emission or its complete suppression. The particular value of
l = 2 (n = 1) for a domain wall happens to correspond to a
local maximum condition for spin wave emission. However, a
potential barrier of any height generates spin waves much more
efficiently than the potential well solutions. The peak at around
l = −3 generates spin waves most efficiently compared to any
other profile height, although this optimal value depends on
the frequency for a given set of the other parameters.

Figure 4 compares the frequency dependence of the x ′
and y ′ components of the spin wave amplitude S−(ω), for
both a Pöschl-Teller potential well (domain wall) and barrier.
For comparison, we include the magnitude of the uniform
precession m̃h, excited by the same field. The difference
between S−

x ′ (ω) and S−
y ′ (ω) at small wave numbers shows

that the precession is elliptical, with the ellipticity decreasing
with increasing frequency. The frequency dependences of the
precession amplitude far from the domain wall are different for

propagating spin waves S−(ω) and the uniform precession m̃′
h.

As a result, for a domain wall (more generally, a Pöschl-Teller
well profile) the out-of-plane component S−

x ′ (ω) is only larger
in amplitude than m̃′

h at low frequencies, i.e., for k− �
150 (μm)−1. However, for a Pöschl-Teller barrier profile,
S−

x ′ (ω) exceeds m̃′
h up to much higher frequencies, i.e., for

k− � 300 (μm)−1. This shows that, despite domain walls being
such efficient magnonic emitters, an even better efficiency
could be achieved by tailoring the local effective magnetic
field (through modification of, e.g., the anisotropy strength
[21,33]) to form a Pöschl-Teller potential barrier instead.

IV. CONCLUSIONS

In summary, we have investigated theoretically the origin
and behavior of exchange spin waves generated by a Bloch
domain wall. The domain wall acts as a source of spin waves
simply because it is an inhomogeneity in the magnetization
(a “graded magnonic index”). Crucially, the emission of spin
waves is at the frequency of the driving uniform harmonic
microwave field, and with amplitude scaling linearly with the
field strength. This is clearly the result of a linear process, and
thus the domain wall motion is not the cause of spin wave emis-
sion here. By analyzing the exact equations which describe
the domain wall, we establish that the depth of the Pöschl-
Teller potential due to the domain wall is naturally sized to
maximize the spin wave emission. We also find that certain
“heights” of the profile can lead to spin wave confinement
within, rather than emission from, the profile [34]. Further
enhancement of the spin wave emission could be achieved
using nanofabrication to artificially shape the graded magnonic
index, to form a Pöschl-Teller barrier rather than a well.
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