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Spin Wave Excitations of the Interacting Two-Dimensional
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The aim of this work is to study spin-wave excitations in the row of interacting two-dimensional nanodots in
the vortex state. We use a discrete dipole model taking into account the nearest-neighbour exchange and dipolar
interactions. Magnetic configuration of each dot is assumed to form an in-plane vortex (circular magnetization).
We examine the dependence of frequencies and profiles of spin-wave modes vs. the dipolar-to-exchange interaction
ratio and the dot separation. Special attention is paid to some particular modes: lowest-frequency azimuthal modes
and the fundamental mode, an analogue of the uniform excitation. Some conclusions regarding the influence of
the size of dots the row consists of as well as the chirality of neighbouring vortices are provided too.
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1. Introduction

In magnetic systems the concurrence of short and long
range interactions is responsible for a variety of inter-
esting effects [1–3]. In small magnetic dots the com-
petition between the exchange and dipolar interactions
leads to a rich spectrum of magnetic configurations in-
cluding vortices [4]. In potential applications of mag-
netic vortices, which rage from information processing to
microwave-frequency multiplication [5–7], an important
role is played by spin waves. In particular, the lowest
mode plays a special role in metastable vortices, in which
it becomes a soft mode responsible for the transition to
different magnetic configurations [8]. This lowest mode is
reported to be of different kind, from an azimuthal mode
of different order to localized or fundamental one [9–11].
Spin wave excitations are involved in the vortex core
switching in an isolated dot [12] but above effects should
be visible also in arrays of interacting vortices [13] and
vortex crystals [14].

In the present study we focus on the spin-wave spec-
trum of the row of two-dimensional (2D) circular dots
coupled by dipolar interactions. We analyze the forma-
tion of the bands and the influence of the dipolar-to-
exchange interaction ratio, the dot size, and the vortex
chirality on the band width. Particular attention is paid
on two kind of modes: azimuthal modes of the lowest
frequencies and the fundamental mode, a counterpart of
the uniform excitation [15].

2. The row of dots

The object of our study is a row of circular dots cut
out from a 2D square lattice with elementary magnetic
moments (spins) in its sites. The diameter of the dot
means the diameter of a circle used for cutting out the
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dot expressed in the unit of the lattice constant a. The
dots separation ∆, i.e. the distance between neighbour-
ing dots, is measured between two closest sites belonging
to these dots, and is constant in the row. For every dot
in the row its magnetization is assumed to form an in-
plane vortex. Since the vortex chirality, i.e. the direction
of the in-plane magnetization, can be clockwise or anti-
clockwise we consider two cases: with the same chiral-
ity for all dots in the row and with alternating chirality,
where the direction of in-plane magnetization is opposite
in neighbouring dots.

We consider the dynamics of a magnetic moment
MR, R being the position vector, in the linear approx-
imation, assuming |mR| ! MR|, |M0,R| � |MR| and
mRKMR where M0,R and mR are the static and dy-
namic component of the magnetic moment, respectively.
To describe the time evolution of mR, oscillating har-
monically with a frequency ω, we use the damping-free
Landau-Lifshitz (LL) equation. In the effective field we
take into account the dipolar and exchange interactions.
Linearization of the set of LL equations for all magnetic
moments in the system leads to the eigenvalue problem
for so-called dynamical matrix (see [15, 16] for more de-
tails). Numerical diagonalization of this matrix yields the
frequency spectrum of the spin-wave excitations, and the
spin-wave profiles, i.e., the distribution of the in-plane
(mr) and out-of-plane (mk) amplitudes of precession of
the elementary magnetic moments.

The only one material parameter in our model is the
dipolar-to-exchange interaction ratio defined as:

d �
pgµBq

2
µ0

8πa3J

where g is the g-factor, µB the Bohr magneton, µ0 the
vacuum permeability, a the lattice constant, and J the
nearest-neighbour exchange integral.

Without performing any simulations the information
about the stability of the assumed magnetic configura-
tion is received from the spin wave spectrum. The oc-
currence of zero-frequency excitations (nucleation modes)
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is indicative of the instability of the assumed magnetic
state while the lack of nucleation modes implies its
(meta)stability.

3. Results

First of all, let us recall briefly these properties of spin
waves in a single dot which are important for the cur-
rent work. According to the spin wave profile symmetry,
the modes can be described by azimuthal (m) and ra-
dial numbers (n), i.e. the numbers of the nodal lines in
the particular direction. If the azimuthal number differs
from zero there is a pair of modes with �m and –m but
in our study it is not necessary to distinguish them so
the statement (n,m) means any of two modes: (n,�m)
or (n,�m). Since the dot is based on the discreet lattice
a frequency splitting appears for pairs of modes with par-
ticular azimuthal numbers: if the symmetry of the spin
wave profile matches the symmetry of the lattice. In the
case of a square lattice it happens for m being the even
number while for odd m both modes in the pair have the
same frequency [15].

Typical behaviour of spin wave profiles in the row of
interacting dots is given in Fig. 1 for an exemplary dots
of L � 31 and d � 0.2. In Fig. 1a we show spin wave
profiles of two degenerate first order azimuthal modes
in an isolated dot (the lowest frequency modes in the
spectrum).

In Fig. 1b the profiles of (0,1) modes for a row of three
dots with the separation ∆ � 8 and the same chirality
are shown. The mode i � 1 existing in the isolated dot
splits into three modes i � 1, i � 4, and i � 6. For
the lowest mode (i � 1) excitations in single dots have
the same phase while for the highest mode (i � 6) the
phase in neighbouring dots is opposite. In both modes
excitation of the internal dot is stronger then outer ones.
For the middle-frequency mode (i � 4) there is almost no
excitation in the internal dot. This means that the energy
of the spin wave is located in outer dots. Excitations in
outer dots are in anti-phase. Similarly, mode i � 2 splits
into i � 2, i � 3, and i � 5 but with the lowest mode in
phase and the highest one in anti-phase.

Exactly the same types of modes appear in the row
with alternating chirality but the mode order is reversed.

In Fig. 2 we study the dependence of the spin wave fre-
quencies on the dots separation∆ in the row of three dots
of L � 31 (the same as in Fig. 1) for two values of the
dipolar-to-exchange interaction ratio d. The behaviour
of seven modes is shown: pairs of the 1st, 2nd, and 3rd
order azimuthal modes and the fundamental mode (0,0).
Solid lines stand for the same chirality of all dots in the
row while doted ones for the row with alternating chi-
rality. The frequency of the spin wave of the isolated
dot (dashed lines) splits into three frequencies due to the
dipolar interaction between dots forming a band. (Please
notice that in the model used the exchange interaction
is taken only between nearest neighbours in the lattice
so any separation larger then a single lattice constant
breaks the exchange interaction.) In the bands with odd
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Fig. 1. Spin wave profiles of first order azimuthal
modes (0,1) for dots of L � 31 and d � 0.2: (a) an
isolated dot, (b) the row of three dots with the same
chirality and the dots separation ∆ � 8. The ‘i’ de-
notes the order of modes in the frequency spectrum.
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Fig. 2. Evolution of spin wave frequencies vs. dots sep-
aration ∆ (in the unit of the lattice constant a) for the
row of three dots of the diameter L � 31 with the same
(solid lines) and alternating (dotted lines) chirality for
(a) d � 0.2 and (b) d � 0.5. Dashed lines mark
frequencies in the isolated dot.
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azimuthal numbers there are six modes because in the
isolated dot such modes are degenerate in pairs. Even-
number azimuthal modes form separate bands due to the
frequency splitting in the isolated dot. There is only tiny
difference in the bands formation for rows with the same
and alternating chirality for azimuthal modes regardless
even or odd. In contrary, the band formed from a (0,0)
mode is few times wider for the same chirality than for
alternating one.

For the case of d � 0.2 (Fig. 2a) first band is formed
from two degenerate (0,1) modes, next we have two bands
each formed from one of two (0,2) modes, and the fourth
band formed from two degenerate (0,3) modes. All these
bands are well separated in the range of the distance
between dots considered here.

In isolated dots for the majority of modes in the spin
wave spectrum the frequency decreases with increasing
the dipolar-to-exchange interaction ratio (i.e. weakening
of the exchange interaction within the dot) but with dif-
ferent rate depending on the azimuthal number [15]. As
a result, the order of modes in the spectrum changes. For
the dot in question (L � 31) for d ¡ 0.4 the frequency
of one of (0,2) modes starts to be the lowest. Moreover,
the distance between frequencies of different modes is
smaller. This leads to additional effects in the spectrum
of the row of dots.

As an example, in Fig. 2b we show the case for d � 0.5.
The change of the band width is similar to the case of
d � 0.2 shown in Fig. 2a (please notice that the scale
for the frequencies is different in figures (a) and (b) –
because of it the band width in (b) appears larger). The
lowest band is formed from (0,2) mode and for ∆ � 7 and
below crosses with the second band formed from two de-
generated (0,1) modes. Similarly, the third band crosses
with the fourth one for ∆   5. Again, the (0,0) band is
more than two times wider for the same chirality than
for alternating one.

The same behaviour we found for rows of bigger dots
but here the crossing of bands occurs for smaller values of
d which is caused by the general tendency of the dipolar
interaction to favour higher order azimuthal modes re-
gardless of the source of the dipolar interaction strength:
the size (L) or material (d) of the dot [15].

4. Conclusion
In this work we study the band formation in the row

of three interacting two-dimensional nano-dots in the in-
plane vortex state. In the range of the dots separation
considered here the interaction between dots in the row
is only dipolar. For such system any mode existing in
an isolated dot splits into three. Two of these modes are
excited mostly in the middle dot. The third one is excited
almost solely in outer dots – there is no precession of the
magnetic moments in the middle dot. This behaviour
does not depend on the symmetry of the mode profile nor
the chirality of the neighbouring vortices but the change
of the chirality changes the mode order.

For small values of the dipolar-to-exchange interaction
ratio d the bands are well separated. With growing d the

frequency of modes of the isolated dot decreases with the
rate depending on the azimuthal number which leads to
the change of the mode order. In the row of dots this
results in the band crossing if d is large enough. For dots
of larger diameter the value of d for which this crossing
appears is smaller which reflects the dependence of the
dipolar interaction significance on the size of the system.

For azimuthal modes the chirality of neighbouring vor-
tices very little affects the bands formation. The situa-
tion is much different for the band formed from the fun-
damental excitation where this influence is pretty large.
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