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The stability of Néel skyrmions in ultrathin circular magnetic nanodots is calculated by considering the Dzyaloshinskii–Moriya exchange interaction
(DMI) as an interface term. The areas of the single-Néel skyrmion stability/metastability/instability and skyrmion radius are determined as
functions of the uniaxial out-of-plane magnetic anisotropy and DMI strength. It is shown that the well-known criterion of skyrmion stability in infinite
film should be changed to describe the stability in nanodots. Néel skyrmions can be the ground state for dots of finite radius, whereas they can only
be metastable in infinite films. The skyrmion stability area is extended by decreasing the out-of-plane anisotropy.
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M
agnetic skyrmions— inhomogeneous topologically
non-trivial magnetization textures on the nano-
scale— are a type of magnetic topological solitons1)

in two-dimensional (2D) spin systems characterized by a non-
zero skyrmion number (topological charge), which is defined
as N ¼ R

d2�m � ð@xm � @ymÞ=4�, where mð�Þ ¼ Mð�Þ=Ms

is the unit magnetization vector, Ms is the saturation mag-
netization, and � ¼ ðx; yÞ are in-plane spatial coordinates.

Individual magnetic skyrmions in a restricted geometry
have attracted considerable attention from researchers owing
to their potential applications in spintronic devices, because
the skyrmion motion can be controlled by an ultralow-density
spin-polarized current.2,3) To achieve efficient manipulation
of nanosized spin textures and realize skyrmion-based low-
energy consumption spintronic devices, it is essential to
understand the magnetic skyrmion stability and dynamics
in confined geometries, for instance, in ultrathin magnetic
nanodots and stripes. The relativistic Dzyaloshinskii–Moriya
exchange interaction (DMI), existing at the ferromagnetic
metal and heavy metal interface in ultrathin films, leads to
the stabilization of Néel skyrmions with a given sense of
the magnetization rotation.3,4) These individual chiral Néel
skyrmions were recently observed at room temperature by
Boulle et al. in Pt=Co=MgO,5) Moreau-Luchaire et al. in
Ir=Co=Pt,6) Woo et al. in Pt=Co=Ta, Pt=CoFeB=MgO,7) and
Pollard et al. in Pd=Co8) ultrathin multilayer films and dots.

The role of the DMI in skyrmion stabilization was dis-
cussed in Refs. 9–12. Following the ideas of Dzyaloshinskii,9)

it was found10) that adding to the magnetic energy of an
infinite cubic ferromagnet a term D[m · (∇ × m)] linear in
spatial derivatives of magnetization leads to the stabilization
of an inhomogeneous magnetization texture for any finite
value ofD. Such terms are allowed in magnetic crystals whose
symmetry group lacks the space inversion symmetry opera-
tion. Then, it was shown11) that accounting for the DMI in the
form of the Lifshitz invariants in a bulk uniaxial ferromagnet
results in instability of the uniform ferromagnetic state at
D > Dc ¼ ð4=�Þ ffiffiffiffiffiffiffi

AK
p

, where A is the exchange stiffness, and
K is a uniaxial anisotropy constant. Therefore, the DMI can
stabilize 2D Bloch skyrmions (in modern terminology).
Ivanov et al.12) showed that the Bloch skyrmions in infinite
films with easy axis anisotropy can be stabilized by either
DMI or a high-order exchange interaction. In the case of an

infinite film, the critical D value remains Df
c ¼ ð4=�Þ ffiffiffiffiffiffiffi

AK
p

,
although the effective anisotropy constant K is different. The
isolated skyrmions are metastable at D < Df

c, and other con-
figurations (skyrmion lattices, stripe domains) are stabilized
at D > Df

c. Presumably, some finite value of the interface
DMI strength is necessary for stabilization of a single Néel
skyrmion in ultrathin magnetic dots, similar to that needed
for skyrmion stabilization in bulk uniaxial ferromagnets. The
value of Df

c can be used as a qualitative criterion to estimate
the stability of 2D magnetic skyrmions in a restricted
geometry, especially in thin dots.4) The DMI reduces the
skyrmion energy for the proper skyrmion chirality. Therefore,
the skyrmion stability in a dot should increase with D, leading
to a single skyrmion ground state at D > Dc, where the value
of Dc should be defined. On the other side, large values of D
lead to the stabilization of more complicated inhomogeneous
states (multi-skyrmion, multi-domain, etc.).

In this study, we calculate the magnetic energy of a single
Néel skyrmion in ultrathin cylindrical dots, determine the
area of the skyrmion stability=metastability and the equilib-
rium skyrmion radius, and obtain the skyrmion magnetization
profiles. The case of an effective out-of-plane magnetic ani-
sotropy is analyzed. The dot magnetic parameters, including
the DMI strength, are varied within reasonable ranges to
draw conclusions about the stability=metastability=instability
of the skyrmion configurations.

Let us consider a thin circular magnetic dot with radius R
and thickness L [Fig. 1(a)] and parameterize the unit mag-
netization vector by the spherical angles, m ¼ mð�;�Þ. The
angles �;� are functions of the polar radius vector � ¼
ð�; ’Þ located in the dot plane. For this kind of the mag-
netization configuration, the total magnetic energy functional
is E½m� ¼ L

R
d2�"ðmÞ,11,12) with the energy density

"ðmÞ ¼ AðrmÞ2 þ "DMIðmÞ � Kum
2
z þ "mðmÞ; ð1Þ

where εDMI = D[mz(∇ ·m) − (m · ∇)mz] is the interface DMI
energy density, with D being the DMI parameter, Ku > 0 is
the out-of-plane uniaxial anisotropy constant, mz is the mag-
netization z-component, and εm is the magnetostatic energy.
The magnetostatic energy is non-local in the general case.
However, within the limit of the ultrathin dot (β = L=R → 0),
the magnetostatic energy density can be simplified and
written in the local form "mðmÞ ¼ �0M

2
sm

2
z =2. Therefore, the
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energy is accounted via an effective uniaxial anisotropy
constant K ¼ Ku � �0M

2
s =2. We also define the magnetic

material quality factor as Q ¼ 2Ku=�0M
2
s and consider the

case of Q ≥ 1.
The magnetization is assumed to be independent of the

thickness coordinate z. We search for axially symmetric mag-
netization configurations (m depends only on the radial coor-
dinate ρ); i.e., the magnetization angles are Θ = Θ(ρ) and
Φ = φ + φ0 [’0 ¼ 0; � for the Néel skyrmions considered
below, see Fig. 1(b)]. The skyrmion number for the radially
symmetric skyrmions is N = [cos(Θ(0)) − cos (Θ(R))]=2. The
total skyrmion magnetic energy as a functional of the
skyrmion magnetization is represented by the polar magnet-
ization angle Θ(ρ), E = E[Θ(ρ)]. We can write the Lagrange–
Euler equation for the functionΘ(ρ) to minimize the skyrmion
energy (1) using the substitution tan[Θ(r)=2] = exp[−f (r)]:

f 00 þ 1

r
f 0 þ �2 þ 1

r2

� �
� ð f 0Þ2

� �
tanhð f Þ � d

r

1

coshð f Þ ¼ 0;

ð2Þ
where r = ρ=lex, ξ2 = Q − 1, the reduced DMI strength is
d = ∣D∣lex=A, and lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=�0M2

s

p
is the exchange length.

The boundary conditions for the function Θ(ρ) are
Θ(0) = π and �0

rðRÞ ¼ d=2.13) Instead of the latter condition
for ultrathin dots (R=L ≫ 1), it is more convenient to use the
condition Θ(R) = 0, which is similar to that used for the
description of the isolated skyrmions in infinite film. This is
justified for large dot radii (rd = R=lex ≫ 1), where the edge
area of the dot contributes negligibly to the dot magnetic
energy. Such a boundary condition results in the integer
skyrmion number ∣N∣ = 1. The boundary conditions for the
function f (r) are f (0) = −∞ (exact) and f (rd) = ∞ (approxi-
mate, rd ≫ 1). We define the skyrmion radius Rs < R using
the equation mz(Rs) = 0, Θ(Rs) = π=2 or f (rs) = 0, where the
reduced radius is rs = Rs=lex.

The solution of Eq. (2) allows calculating the radially
symmetric skyrmion energy as

E½�ðrÞ� ¼ 2�AL

Z rd

0

dr r

�
ð�0

rÞ2 þ
1

r2
þ �2

� �
sin2 �

þ d �0
r þ

1

r
sin� cos�

� ��
þ E½0�; ð3Þ

where E½0� ¼ �0M
2
sV=2 is the energy of the perpendicular

single-domain state (V = πR2L is the dot volume).
Equation (2) is a non-linear differential equation and

cannot be, in general, solved analytically. For this reason,
we use different approximate solutions or trial functions for
the skyrmion magnetization profile, Θ(ρ). By introducing a
trial function (skyrmion ansatz) to the energy functional (3),
one can obtain the energy of the skyrmion configuration.
It is evident that the solution of Eq. (2) depends on only two
parameters: d and ξ. In the simplest case of an isotropic dot
with ξ = 0, without DMI d = 0, the exact solution satisfying
the boundary conditions is f (r) = ln(r=rs), or the Belavin–
Polyakov (BP) soliton.14) The BP ansatz is also an approx-
imate solution when r → 0 for any �; d. The trial function
proposed by Ezawa,15) f (r) = ξrs ln(r=rs) (a generalized BP
ansatz with the effective topological charge q = ξrs), formally
satisfies the boundary conditions but does not satisfy Eq. (2).
The approximate solution of Eq. (2) at r ≫ 1, which is far
from the dot center r = 0, is f (r) = ξ(r − rs) or tan[Θ(ρ)=2] =
exp[−(ρ − Rs)=Δ], where � ¼ ffiffiffiffiffiffiffiffiffi

A=K
p

is the domain-wall
width. This is a frequently used radial domain-wall ansatz.
This ansatz yields f (0) = −ξrs and does not satisfy the exact
boundary condition f (0) = −∞, resulting in the singularity of
the exchange energy at r = 0. It can be used with precaution
only within the limit ξrs = Rs=Δ ≫ 1, i.e., for large-radius
skyrmions, Q > 1, and thin domain walls. To avoid the
singularity at r = 0 and describe all ranges of the skyrmion
radii rs, we use the trial function f (r) = ln(r=rs) + ξ(r − rs)
suggested by DeBonte16) to describe bubble domains in
infinite films. Although this function is not a solution of
Eq. (2), it is evident that f (r) satisfies the boundary conditions
and is reduced to the BP ansatz at ξ = 0 and to the domain-
wall ansatz at r ≫ 1.

We use below the ansatz f (r) = ln(r=rs) + ξ(r − rs),
cosΘ(r) = tanh f (r), and sinΘ(r) = 1=cosh f (r) to calculate
the skyrmion energy (3) and find the areas of the skyrmion
metastability=stability. We consider that a skyrmion state is
stable when it has the lowest energy (ground state) compared
with the other magnetization states, and a skyrmion is meta-
stable when its energy is higher than that of any of other mag-
netization configuration. The Néel skyrmion energy Eðrs; �Þ
is a function of two parameters: rs and ξ (ξ−1 can be con-
sidered as the skyrmion radius in units of lex). However, it
was shown numerically in Ref. 17 that for a fixed dot radius
R and wide range of D (0.5 < D=Dc < 2) the parameter ξ−1

is almost constant and equal to its nominal value ��1 ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1

p
. Considering �0

r ¼ �ð� þ 1=rÞ sin�, we rewrite
the skyrmion energy as

Eðrs; �Þ ¼ 2�AL

Z rd

0

dr
r

cosh2 fðrÞ

�
2

1

r2
þ �2 þ �

r

� �

� d � cosh fðrÞ þ e�fðrÞ

r

� ��
ð4Þ

and minimize it with respect to the skyrmion radius rs using
the standard procedure ∂E=∂rs = 0, @2E=@r2s � 0. We plot the
skyrmion-stability phase diagram in Fig. 2, applying the
definition that skyrmions with the radius Rs=R→ 0 corre-
spond to the perpendicular single-domain state mz(r) = +1
(area marked by the symbol u), whereas skyrmions with the
radius Rs > R correspond to the single-domain state mz(r) ≈
−1 (area marked by the symbol uA). There is only one

(a)

(b)

Fig. 1. Sketch of the cylindrical magnetic dot and the coordinate system
used: (a) mð�;�Þ is the unit magnetization vector described by the spherical
polar angle Θ and the azimuthal angle Φ; (b) Néel skyrmion magnetization
distribution in the dot cross-section by the radial plane yz. The dot radius is R,
and the skyrmion radius is Rs.
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minimum of the energy (4) in the areas u and uA. The areas
marked by the symbols m and s describe bi-stability regions,
where the skyrmion is metastable and the single-domain state
is stable (m) and where the skyrmion is stable and single-
domain state is metastable (s). Only the Néel skyrmion stable
state exists in the area marked as s0. The solid blue line corre-
sponds to the equilibrium of the m- and s-states determined
by the equation EsðQ; dÞ ¼ ESDðQ; dÞ, at which the skyrmion
energy is equal to the single-domain state energy.

The lines in the phase diagram (Fig. 2) are explained as
follows. The black line describes the u–m boundary and is
determined by the equation rsðQ; dÞ ¼ 0. The red–green line
corresponds to the s0–uA boundary and is determined by the
equation rsðQ; dÞ ¼ 1 at small values of Q − 1. The pink line
at large values of the DMI parameter d describes the s–s0
boundary (the second large radius energy minimum moves
outside the dot and disappears). The pink line at small values
of d describes the m–uA boundary. The skyrmion metastable
minimum disappears with decreasing Q, after which only the
uA perpendicular single-domain state minimum exists.

As described above, we calculated the stability of the Néel
skyrmion magnetization configurations in ultrathin circular
dots with the interfacial DMI energy. The skyrmion state is
metastable for the majority of the points in the Q–d space
(Fig. 2). The Néel skyrmion is the ground state at d > dc(Q),
where the function dc(Q) represented by blue, red, and green
lines in Fig. 2 reveals a deep minimum at small values of
Q (dmin = 0.35 for the given R=lex = 20). The skyrmions are
metastable within a wide range of values of D satisfying
the inequality d < dc(Q), except in regions of a small Q and
small D (Fig. 2). Therefore, values of Q slightly above 1 are
optimal for stabilizing the Néel skyrmion in an ultrathin
circular magnetic dot for moderate values of d. The phase
Q–d diagram plotted in Fig. 2 does not depend on the dot
magnetic parameters ðA;Ms; Ku; DÞ. It depends weakly only
on the reduced dot radius R=lex. The DMI is determined via
the dimensionless combination d / D=Ms

ffiffiffiffi
A

p
. The typical

value of D accessible in experiments with ultrathin films and

dots such as X=Co (X = Pt, Ir, Pd) is 1–2mJ=m2; therefore,
moderate values of the dot magnetization Ms and the
exchange stiffness A are necessary to obtain stable Néel
skyrmions with d = 0.5–0.8.

To describe the skyrmion magnetization analytically, we
used the DeBonte radial domain-wall ansatz,16) whose accu-
racy was numerically checked for circular dots in Ref. 18. The
calculated equilibrium skyrmion radius Rc(D) increases with
the increase of the DMI strength (Fig. 2) at a fixed value of Q.
The skyrmion radius is always small at D < Dc in the area of
the skyrmion-state metastability (m). Rc(D) increases sharply
in the region of D ≈ Dc (m–s boundary) for all calculated dot
radii and becomes saturated at a large D (in the s0 area),
reaching values of Rc(D)=R ≈ 0.6–0.7 for any Q > 1 and
typical dot radii of R = 100–200 nm. Qualitatively, this agrees
well with the simulations reported by Rohart et al.4) for small
dot radii of R ≤ 100 nm. However, the calculated values of
dc(Q) are essentially larger than those calculated by Rohart
et al. d f

cðQÞ ¼ ð4=�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1

p
for small values of Q and

approach them at increasing Q. The condition Rs=Δ≫ 1 is
satisfied at Q≫ 1, and the domain-wall model becomes
asymptotically exact. The Néel skyrmion is unstable for small
D according to Fig. 2, whereas the skyrmion is metastable
for all D < Dc according to the domain-wall model4) for a
ultrathin circular dot or infinite film and according to the
simulations19) for an infinite film of finite thickness.

Many authors, including Rohart et al.4) and Buettner
et al.,20) following the theory of bubble domains in infinite
films,21) considered the skyrmion magnetization configura-
tion as a circular domain wall located at the skyrmion radius
position Rs described by the singular ansatz tan[Θ(ρ)=2] =
exp[±(ρ − Rs)=Δ]. The domain-wall model predicts the
skyrmion radius Rs(D) singularity at D→ Dc − 0 and no
dependence of Rs on the dot radius R. Therefore, this model
does not account for the difference between the infinite film
and the finite dot. This seems to be non-realistic for magnetic
dots having a finite R of approximately 100 nm and con-
tradicts the micromagnetic simulations reported by Rohart
et al.4) yielding stable skyrmions at D > Dc. A more rigorous
approach to the skyrmion stability developed in the present
work involves searching for the skyrmion energy minima and
comparing the skyrmion energy with the energy of the
perpendicularly magnetized state (Q > 1) and other compet-
ing magnetization configurations (e.g., vortex or in-plane
single domain) if Q < 1 (not considered here).

To the knowledge of the author, presently only two exper-
imental papers are published on Néel skyrmion observations
via X-ray imaging in square Pt=Co=MgO dots5) and circular
Ir=Co=Pt dots.6) The magnetic parameters of the circular
dots6) are Ms = 960 kA=m, A = 15 pJ=m or lex = 5.1 nm, and
Q ≈ 1.30. Using the value of D = 1.4–1.6mJ=m,2,6) we
obtain the reduced DMI strength d = 0.46–0.53. Néel
skyrmions with such parameters are metastable according
to the phase diagram plotted in Fig. 2. The strong depend-
ence of the skyrmion radius on the out-of-plane magnetic
field and relatively small values of the reduced radius Rs=R ≈
0.1–0.2 measured in Ref. 6 indirectly support the conclusion
regarding the skyrmion metastability.

In the investigated case of out-of-plane effective magnetic
anistropy Q > 1, the large values of the DMI D cause the
nucleation of more complicated magnetization configurations
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Fig. 2. Phase diagram of the Néel skyrmion stability in an ultrathin
circular dot. The reduced dot radius is R=lex = 20. The skyrmion is the
ground state of the dot in the areas s and s0. Q ¼ 2Ku=�0M

2
s � 1 is the

magnetic material quality factor, and d = ∣D∣lex=A is the reduced strength of
the DMI. The dark yellow dashed line describes the critical line of the
skyrmion metastability d f

cðQÞ ¼ ð4=�Þ ffiffiffiffiffiffiffiffiffiffiffiffi
Q � 1

p
calculated within the domain-

wall model for an infinite film.4)
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(nπ-skyrmions,4) labyrinth domain, etc.); i.e., the individual
Néel skyrmion state with the topological charge ∣N∣ ≈ 1 is no
longer metastable or stable. This is beyond the scope of the
present article, where only the values of the reduced DMI
parameter d < 1 are considered.

In summary, the value of the material quality parameter
Q ¼ 2K=�0M

2
s defining the effective out-of-plane dot mag-

netic anisotropy is important for Néel skyrmion stabilization,
along with the DMI strength D. Almost all calculated Néel
skyrmions in ultrathin circular nanodots are metastable. The
skyrmion stability area is relatively small in terms of the
dot magnetic parameters d and Q. The skyrmions are
metastable if the DMI strength is D < Dc(Q), where Dc is
the DMI critical value, and stable (the nanodot ground state)
if D > Dc(Q). The function Dc(Q) has a deep minimum at
Q ≈ 1 that allows optimizing the ultrathin dot magnetic
parameters to stabilize the Néel skyrmions.
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