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Abstract: Boundary conditions for order 

parameters at an interface between ferromagnetic (FM) 

and two-sublattice antiferromagnetic (AFM) materials 

were obtained in the continuous medium approximation 

similarly to the approach which allows one to take into 

account the finite thickness of the FM/FM interface, 

which is much less than spin wave length. Three order 

parameters are considered inside an interface of finite 

thickness with the magnetization M of FM, 

magnetizations of both sublattices M1 and M2 of AFM. 

The uniform and non-uniform exchange between all order 

parameters are taken into account to the interface energy. 

Using these boundary conditions, the excitation of a 

surface evanescent spin wave is considered in AFM when 

the spin wave in FM falls onto this interface. The 

coefficients and the phases of transmission and reflection 

of spin wave through the FM/AFM interface are derived. 

 

Keywords: ferromagnet, antiferromagnet, finite 

thickness interface, boundary conditions, evanescent spin 

wave. 

 

1 Introduction 

The understanding of the boundary conditions for 

the theory of wave propagation in non-uniform media at 

interfaces between regions with different material 

properties is of essential importance, such as at an 

interfaces between two FMs or FM/AFM [1, 2]. Recent 

years have witnessed a growing interest to properties of 

antiferromagnets, since they have a plenty of advantages 

compared to ferromagnets [3, 4].  

Since spin waves in AFMs operate coherently in 

the THz regime [5], which is orders of magnitude faster 

than the frequency of typical ferromagnetic spin waves 

the development of novel methods for exciting AFMs at 

the nanoscale was investigated [6], which contributed to 

development in the field of antiferromagnetic spintronics. 

AFMs are attractive as potential active elements in 

next-generation spin-transport and memory-storage 

devices [7-10] therefore the formation and dynamics of 

spin textures in antiferromagnetic insulators was 

investigated and an alternative generic geometry for the 

induction of ultrafast autonomous antiferromagnetic 

dynamics was proposed [11]. 

It is important to note that during the theoretical 

study of dynamics of antiferromagnetic domain walls 

driven by spin-orbit torques in AFM/heavy metal bilayers 

[12] was found that the antiferromagnetic domain wall 

velocity can reach a few kilometers per second and the 

antiferromagnetic domain wall can therefore serve as a 

terahertz source [12]. Furthermore, motion of topological 

solitons in AFMs was researched under the combined 

action of perturbations such as an external magnetic field 

and torque-generating electrical current and it was shown 

that spins of electrons exchange angular momentum with 

the soliton [13]. 

The exchange bias (EB) effect in the magnetic 

systems composed of FM/AFM also causes considerable 

amount of interest since the FM/AF interface plays a 

significant role on the EB properties of magnetic 

multilayers and nanoparticles [14], and the physical 

properties of such systems have been widely investigated 

[15–17]. 

According to the foregoing, possible cooperation 

between antiferromagnetism and topological properties in 

both momentum and real spaces is of great interest [18]. 

In this paper, the most general form of the 

boundary conditions between FM and two-sublattice 

AFM were reduced to the inclusion of only energies of 

uniform and non-uniform exchange between all 

sublattices [1], and the transit of a surface evanescent spin 

wave [19] through the FM/AFM interface have been 

investigated when the spin wave in FM falls onto this 

interface in conformity with the results of the previous 

work [1]. 

 

2 Theoretical Consideration 

 

2.1 Abridged general boundary conditions in 

the interface between FM/AFM 

The tasks of this work are: first – to find the 

abridged general form of the boundary conditions 

between FM and two-sublattice AFM taking into account 

the fact that the interface is a composite material with 

finite thickness δ which is much less than the length of the 
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spin wave λsw including only energies of uniform and 

non-uniform exchange between all sublattices [1, 2]; and 

second – to derive the coefficients of transmission and 

reflection of surface evanescent spin wave through the 

FM/AFM interface [19]. 

 

Fig. 1. The model shows the schematic image of 

the system consisting of FM, interface of finite thickness 

between FM/AFM and two-sublattice AFM and 

magnetizations in each layer with the small perturbations 

of order parameters relative to the ground state. The FM 

layer creates spin wave excitations in the AFM layer. 

The normal to the interface of magnets n  is 

parallel to the y-axis. 

The main form of energy taking into account only 

energies of uniform and non-uniform exchange between 

all sublattices is following: 
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FM is magnetized along the z-axis: M is parallel 

to the z-axis (as shown in Fig. 1) and the z-axis is easy 

axis in the AFM, where the AFM vector 

is 1 2( ) L M M  (in the ground state); 12 ( )A y , 12 ( )y  

are uniform and non-uniform exchange magnetic 

parameters between 1st and 2nd AFM sublattices, 

respectively; 1( )A y , 2 ( )A y , 1( )y , 2 ( )y  are uniform 

and non-uniform exchange magnetic parameters between 

FM-1st and FM-2nd AFM sublattices, respectively; ( )y , 

1( )y , 2 ( )y  are non-uniform exchange magnetic 

parameters in the FM layer, 1st and 2nd AFM sublattices, 

respectively. 

The magnetic parameters characterizing FM and 

AFM materials and material of the interface region in the 

energy (1) have typical dependency on the y coordinate 

which is illustrated in Fig. 2. 

 

Fig. 2. Schematic assumption of the coordinate 

dependence of the magnetic parameters characterizing 

FM, two-sublattice AFM, and the interface region in the 

energy (1) on the y coordinate. 

Oder parameters M, M1, M2 are considered as 

slowly varying functions with  0,y  , and the 

coefficients 1( )A y , 2 ( )A y , 12 ( )A y , 1( )y , 2 ( )y , ( )y , 

1( )y , 2 ( )y , 12 ( )y  as rapidly varying functions 

(Fig. 2) for deriving boundary conditions taking into 

account sw  . 

The values of the magnetic parameters on the 

interface are presented in Table 1. 

Table 1. Notations for the character of variation of the 

magnetic parameters in the vicinity of the interface. 
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Boundary conditions in vector form for order 

parameters at an interface between FM and two-sublattice 

AFM materials have been obtained in the continuous 

medium approximation taking into account uniform and 

non-uniform exchange between all sublattices same to the 

approach in [1]. Boundary conditions in vector form can 

be written as: 
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For example, the conditions (2) have been 

linearized taking into account the ground states of 

magnetization of FM, AFM and the interface, considering 

the small perturbations of order parameters relative to the 

ground state as following: 



0

1 01 1 1 1 1

2 02 2 2 2 2

  

  

 

,

,

,  

z x x y y

z x x y y

z x x y y

M m m

M m m

M m m

   

   

   

M e m m e e

M e m m e e

M e m m e e

,     (3) 

where 

0

1 01

2 02

M

M

M

m

m

m

,                         (4) 

where m  is deviation magnetization of FM, 1m , 2m  are 

deviation magnetization of two-sublattices AFM, 0M
 
is 

the projection of the magnetization of FM, 01M and 02M  

are projections of the magnetizations of the first and 

second sublattices respectively of the AFM to the z-axis 

in the ground state. 

For convenience the next notations are used: 
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The linearized boundary conditions have the 

following form: 
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   (5) 

 

2.2 Propagation of a surface evanescent spin 

wave through the interface between FM/AFM: 

The excitation of a surface evanescent spin wave 

has been considered in AFM when spin wave in FM falls 

onto this interface as shows on the Fig. 3. 

 

Fig. 3. Schematic illustration of the excitation of a 

surface evanescent spin wave in AFM when spin wave in 

FM falls onto this interface, where the incident wave 

vector is 
0 0 0(0, , )y zk k k , the reflected wave vector is 

1 1 1(0, , )y zk k  k  and the transmitted wave vector is 

2 2(0,0, )zk k , and  - angle between the wave vector 

of incident wave and y-axis. From Fig. 3, it is clear that 

0 1y yk k   and 
0 1 2z z zk k k  . 

Then angle between the wave vector of incident 

wave and y-axis can be expressed in terms of the wave 

vector components as follows: 
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The evanescent spin wave can be written in a 

following form: 
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where 
0A – amplitude and  – frequency of incident spin 

wave which are defined. 

A , B , R ,  ,   and 
1  should be found, where 

A , B  are amplitudes of transmitted spin wave (two 

amplitudes is a result of consideration of two-sublattices 

AFM);  ,   are phases of transmitted spin wave; R  and 

1  are amplitude and phase of oscillations of a reflected 

spin wave, respectively. 

After substituting Eqs. (7) in the linearized 

boundary conditions (5) and simplify the system of 

equations can be written as: 
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The general solution of the system of equation (8) 

has the following form: 
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where the following expressions were used to reduce the 

solution: 
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3 Results and Discussion 

As it is well-known, the ratio between the 

frequency 
s  and the wave vector k  of the spin wave – 

dispersion equation –  determines the spectrum of spin 

waves in FM [20] and has the following form: 
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where 1 , 2  are frequencies of spin waves, k  and k  

are polar and azimuthal angles of the wave vector k , 

respectively. 

Assuming that FM has anisotropy of the "easy 

axis" (  >0) and 
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In the AFMs, unlike the FMs, there are not one but 

two branches of spin waves. Considering that AFM has 

anisotropy of the "easy axis" ((   )>0) the frequencies 

of the spin waves are determined by the formulas: 
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where  
0

e
H  is external magnetic field and a magnetic field 

1 0 2 ( )H M     . 

Taking into account that components of the wave 

vector  0 0 0, ,x y zk k kk  for FM of dispersion equation 

can be presented as follows: 
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where cos 0k  , sin 1k   and 
2
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substituting Eqs. (11) and (13) in the dispersion equation 

for FM (10) 
0k  can be expressed as: 
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From dispersion equation for AFM (12) can be 

expressed the length of the spin wave λsw, taking into 

account that components of the wave vector 
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Using Eqs. (14) and (15) for the solution (9), the 

dependences of all parameters of surface evanescent spin 

wave in AFM when spin wave in FM falls onto the 

FM/AFM interface, namely A , B , R ,  ,   and 
1  on 

the frequency can be determined. 

 

4 Conclusion 

The abridged general boundary conditions in the 

interface between FM/AFM were considered in this work 

including the energies of uniform and non-uniform 

exchange between all sublattices based on the previous 

investigation [1] and the surface evanescent spin wave in 

form (7) transition through the FM/AFM interface was 

theoretically investigated in the case when the spin wave 

in FM falls onto this interface and is considered in AFM. 

The coefficients of transmission and reflection of surface 

evanescent spin wave and relevant phases were derived in 

form (9). The dependences of all parameters of surface 

evanescent spin wave were determined using FM and 

AFM dispersion equations. 

As can be seen from the solution (9) the phases of 

transmitted spin wave for each sublattice of two-sublattice 

AFM are equal. Also it is obvious that the coefficient of 

reflection is same as the coefficient of incidence of spin 

wave 0R A , which is correct, because otherwise it 

would contradict the continuity of the energy flow. 

Indeed, the wave in AFM is evanescent, and the energy is 

not transferred to the plus infinity. 
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