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Abstract

In this paper, we show that the phase shift of the spin waves can be controlled by metasurface

formed by an ultra-narrow non-magnetic spacer separating two thin ferromagnetic films. For this

purpose, we exploit the strength of the exchange coupling of RKKY type between the films which

allows to tune the phase of the transmitted spin waves in the wide range of angles [−π/2;π/2]. We

combined the phase-shift dependency along the interface with the lens equation to demonstrate

numerically the metalens for spin waves.
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I. INTRODUCTION

Spin waves (SWs) are promising data carriers for future logic devices, information

processing and communication with low-energy dissipation, relatively high and flexible

frequency operation and possible miniaturization down to nanoscale1–4. However, still

many basic units, such as SW generators and detectors, SW waveguides, SW amplifiers or

SW modulators have to be further developed to demonstrate their useful performance5.

Control of the phase of propagating SWs is expected to be one of the key element in future

magnonics like it is in microwave technology, electronics, and photonics. To fulfill the re-

quirements of miniaturization, the expected magnonic component shall be small, ideally

shorter than the wavelength. An interesting idea to fulfill this condition comes from pho-

tonics, where the use of ultra-thin slabs of sub-wavelength thickness, called metasurfaces

(MSs) have been introduced. They promise valuable advantages in controlling the waves

by spatial manipulation of the wavefront characteristics.

The MS concept is based on the phase gradient introduced by the specially arranged

tiny elements having a sub-wavelength size as compared with the wavelength λ of the

incident wave6. In optics, these tiny phase-shifting elements are mostly designed from

metallic materials or dielectric resonances. They rely on subwavelength gratings, res-

onators, waveguides, and they introduce geometric phase differences to tune the phase

of the reflected or transmitted wave. Their working principle is well described with the

generalized Snell’s law7 which takes into account an inhomogeneous phase change on the

two-dimensional plane of the MS. Such structures are widely investigated for application

in steering propagation of electromagnetic8 and acoustic waves9–11. Originally designed

at radiowave frequencies for radar and space communications12, MSs have been imple-

mented to design many new planner devices at infrared and optical frequencies, such as

an ultra-thin lens, vortex plates, a polarization converter, color filters, holograms12–18.

II. ANALITICAL MODEL

In this paper, we propose a new concept of the MS for SWs based on the ultra-narrow

interface between two thin ferromagnetic films and demonstrate numerically a possibility

of exploiting this idea for design the SW phase-shifting systems. The working principle
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behind the proposed magnonic MS is based on the interlayer exchange coupling between

magnetic films, which can be mediated by a non-magnetic metallic spacer between the

edges of the films and had essentially the same physical origin as the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction. We showed analytically and numerically that such an

ultra-narrow interface, of the width up to a few atomic planes, can effectively change the

phase of the reflected and transmitted SWs having tens on nanometers long wavelength.

In particular, we demonstrate the magnonic MS allowing to focus the plane SWs in an

arbitrary located focal point, i.e., we show magnonic metalens. It is a new approach with

respect to the already demonstrated concepts of SW lenses basing on either modification of

the interface curvature19–21 or introduction of the magnonic refractive index gradient22–24.

Both these methods require wide lenses and exploit the classical optic rules to focus the

wave.

Let’s first consider the system of two semi-infinite ferromagnetic thin films separated

by an ultra-narrow interface along the y-axis with the uniform static external magnetic

field H0 which is parallel to the interface, and saturates the system. We assume that

the magnetizations in both ferromagnets are exchange coupled, with the strength of the

coupling described by the parameter A12. Different models of the oscillatory interlayer

exchange coupling between ferromagnetic layers separated by a non-magnetic metal have

a common physical mechanism: due to contact of the spacer with the first ferromagnetic

layer, the spacer conduction electrons experience spin polarization25–27. The latter extends

throughout the spacer and interacts with the second ferromagnet and results in the effec-

tive exchange interaction. Depending on the assumptions, various models can be explored

(RKKY, tight-binding, hole-confinement, free-electron, s-d mixing etc.)25,27–29. According

to the model developed in Ref.30 the RKKY coupling energy per unit area with zero angles

between the magnetizations in the ferromagnets is proportional to the interlayer coupling

constant J12:

A12 = J12/(M01M02), (1)

where M01 and M02 are the saturation magnetizations of the first and the second mate-

rial, respectively. To relate variation of A12 with respect to the interface width D we use

the model developed in Ref. [26]. For the interlayer exchange coupling between the two

semi-infinite fcc Co layers with Cu(001) spacer, Bruno found a good agreement between
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the theoretical model and the experimental observations27,31. Accordingly, the interlayer

coupling constant dependence on the spacer thickness D [in atomic layers (AL) units] can

be modeled with a simplified formula26:

J12 =
I1
D2

sin

(
2π

Λ1

+ φ1

)
+

I2
D2

sin

(
2π

Λ2

+ φ2

)
, (2)

where I1 and I2 are the coefficients describing the coupling strength between ferromag-

nets, Λ1 and Λ2 are the oscillation periods, φ1 and φ2 are the phases of the oscillatory

coupling. Eq. (2) reproduces well the experimental data of Co/Cu(001)/Co multilayers

with Λ1 = 2.6 AL and Λ2 = 8.0 AL26,31; coupling strengths I1 = 17.7 erg/cm2 and I2 = 4.3

erg/cm232; phases φ1 = π/2 and φ2 = π26 (see, Fig. 3 b).

To calculate the phase shift ϕT and the transmission coefficient T of the SW transmitted

through the interface connecting the two ferromagnetic thin films we use an analytical

approach for the SW propagation in the system of two ferromagnetic films separated by

an infinitely thin non-magnetic interface. Based on the Landau-Lifshitz equations [Eq. (S1)

in Supplemental Materials] in linear approximation, assuming the plane wave solutions

with wavenumbers k1 and k2 homogeneous across the film thickness [Eq. (S4)] we solve

the system of equations obtained from the exchange boundary conditions at the interface

x = 033,34: 

A12(m2n − ξm1n) + α1

∂m1n

∂x

∣∣∣∣
x=0

= 0,A12(m1n −
m2n

ξ
)− α2

∂m2n

∂x

∣∣∣∣
x=0

= 0,

(3)

where ξ = M02/M01, n = x, z. mjn is a dynamic magnetization component and αj is the

exchange parameter in the j-th ferromagnet, j = 1, 2: αj = Aexj/M
2
0j, where Aexj is the

j-th ferromagnet exchange stiffness constant. We end with the following formulas:

ϕT = arctan
(
A12

ξα2k2 + α1k1/ξ

α1α2k1k2

)
−

π, for A12 < 0

0, for A12 > 0

T =
4α2

1k
2
1

(α1α2k1k2/A12)2 + (ξα2k2 + α1k1/ξ)2
.

(4)
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Based on Eqs. (4) we will obtain the phase shift and intensity of the transmitted SW in

dependence on A12, which through Eq. (2) depends also on D. The assumption of the

infinitely narrow interface is justified whenever λ � D, as we will see the condition

fulfilled to the large extent in the presented results. The analytical results from Eq. (4)

will be directly compared to micromagnetic simulations results.

Figure 1. Schematic of the system design with a focusing metasurface. The system involves the
two ferromagnetic thin films of Co with a non-magnetic metallic material (Cu) of varying width
along the interface (metasurface).

III. MICROMAGNETIC SIMULATIONS

To demonstrate the MS for SWs we perform the finite-difference time-domain micro-

magnetic simulations with Mumax3 solver35–39, taking into account exchange and dipolar

interactions with damping neglected36. We assume homogeneous Co film of 10 nm thick-

ness, 800 nm width and 3 µm long (along the x, y and z, respectively), magnetized to

saturation by the external magnetic field H0 = 1 kOe oriented along the y axis. We ex-

cite the harmonic SW plane waves at 80 GHz frequency (which relate to the 28 nm of

the wavelength) on the left side of the interface (1 µm from the interface, see Fig. 1)

and record the data from the whole structure in the following time steps until the waves
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reach the right side of the simulation area where the absorbing boundary has been im-

plemented40. The interface has been implemented as the unit cell of the discretized mesh

with the artificially introduced exchange interaction A12ex scaled suitably to use the A12

parameter from the analytical model from the Eq. (4)41: A12ex = ∆A12M
2
0/2Aex, where

∆ is the lateral size of the unit cell in micromagnetic simulations. For the simulations

the following parameters for Co have been taken: M01 = M02 = M0 = 1422 kA/m,

Aex,1 = Aex,2 = Aex = 3 × 10−11 J/m42, uniaxial magnetocrystalline anisotropy constant

K1 = K2 = K = 4.5× 106 erg/cm343, and ∆ = 0.75 nm.
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Figure 2. The color scaled dots represent the simulated dependence of the phase shift between
the transmitted and incident SWs on the A12 exchange parameter for 80 GHz waves. Color and
size of the dots corresponds to the intensity of the transmitted SWs. The solid green line indicates
the results of the analytical model.

In Fig. 2 we show the phase-shift and transmission of the SW transmitted through the

interface in dependence on the interlayer exchange coupling constant A12 obtained from

simulations and from Eq. (4). Micromagnetic simulation results (dots) are in very good

agreement with the analytical model (green line). The positive and negative values of A12

relate to ferromagnetic and antiferromagnetic coupling between the Co films, respectively.
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We see, that the A12 determines the value of the phase shift, and also the intensity of the

SW transmission (superimposed in the figure with the color map). T decreases with |A12|
approaching 0, i.e., a limit which indicates exchange decoupled materials. Interestingly,

at small A12 the most significant changes of the ϕT with A12 are observed, indicating the

region suitable for further exploitation.
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Figure 3. Dependence of the selected parameters on the number of atomic layers on the interface:
(a) the strength of the interlayer coupling constant J (the exchange coupling parameter A12ex used
in micromagnetic simulations), (b) spin wave phase shift and (c) transmittance as a function of D.
In (a) the J(D) dependence is based on the theoretical estimation for RKKY-coupling parameter
proposed by P. Bruno in Ref. [Bruno 26], the bright dots correspond to the micromagnetic simula-
tion results, while the violet dots correspond to the experimentally measured values26. Bold lines
inside the highlighted region in the panels (b) and (c) indicate the values used to design lensing
metasurface.
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According to Eq. (2) the interlayer exchange constant depends on D. This dependence

for Co/Cu/Co multilayer is shown in Fig. 3 (a), where very good agreement with exper-

imental results and perfect with micromagnetic simulations are demonstrated. The SW

phase shift and transmittance related to the dependence of A12 on D are shown in Fig. 3

(b) and (c), respectively. The largest change of the phase shift with still valuable trans-

mission are observed in the widths of the spacer up to 2 AL. These results clearly show

that the spacers of the few atomic layers thick can determine the phase acquired by the

transmitted SW in the range from -90◦ up to 90◦44. This range of A12(D) will be further

exploited to design lens for SWs.

The phase gradient introduced along the line of the MS will provide an effective wave

vector along the interface that is imparted to the transmitted waves. This effect is de-

scribed by the generalized Snell law7:

sin(θt)nt − sin(θi)ni =
λ

2π

dϕT

dy
, (5)

where θi and θt are angles of incident and refracted waves with respect to the normal to

the interface, and ni, nt are refractive indexes of the materials. This additional momentum

defined in the phase gradient term
dϕT

dy
is realized in photonic MS by nanoantennas placed

on the surface. The SnellâĂŹs law describes also the refraction of SWs45, therefore, the

phase discontinuity approach used in photonics can be expected to give similar effects

for SWs. We propose to use the exchange coupling introduced above to provide a phase

discontinuity for SWs.

The generalized Snell law indicates, that the transmitted waves can be bent into the

arbitrary direction depending on the phase gradient profile along the MS, as well as the

refractive indices of the surrounding media46. Thus, the phase-shift on MS can be used to

design interfaces offering different functionality, including focusing.

The flat interface will work as a metalens, if for a given focal length f , the phase shift

ϕT (y) imposed on every point of the interface along the y axis will satisfy the following

equation:

ϕT (y) = −2π

λ
(
√

(y − y0)2 + f 2 − f). (6)

To impose this flat lens phase profile ϕT (y) we assume, that the width of the spacer D
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will be dependent on y. In micromagnetic simulations instead of D(y) we used a discrete

change of the exchange scale parameter [A12(y), with the step of 1 nm]47, which is directly

related to D(y) according to Eqs. (1) and (2).
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Figure 4. The phase-shift profile of the meta-lens for SW of the wavelength λ = 28nm and for the
focal point f = 200 nm. The transmission of SW is indicated by the dots color and size.

To design meta-lens based on the interlayer coupling at Co/Cu/Co interface shown in

Fig. 3(a), we select its width in the range up to 3 ALs. This allows to shape the phase of

the transmitted wave in a relatively wide range with the still valuable transmission, see,

Fig. 3(b) and (c), although, the angles of the phase shift from 0 to 65◦ are not accessible.

To increase the intensity of the focused SWs we use 14 repetitions of the available angles

along the interface, distributed symmetrically on both sides of the MS center. The designed

profile of the ϕ(y) to focus the wave along the bisector line of the MS at 150 nm distance

from MS is shown in Fig. 4. The spatial dependence of the transmission of SWs through

the MS is indicated by the color map. Interestingly, the whole transmittance is about 40%

and this low value is related to the large area of the zero-transmission regions marked

with the dark horizontal lines [at ϕT (y) = 0[].

The numerical demonstration of our focusing MS with designed A12(y)to obtain intense

small focal spot of SWs at y = 0, x = 200 nm (according to the phase profile shown in
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Figure 5. The intensity of SWs (normalized to the maximum energy in the focal plane) of the
transmitted waves on the x − y plane. (a) The meta-lens for SWs with the focal spot centered at
y = 0 and 200 nm behind the MS along the x axis. The matasurface is based on the phase shift
design shown in Fig. 4. (b) The meta-lens with the focal spot shifted to x = 300 and y = 150 nm. c)
and d) The phase change along the interface obtained from the lens equation to create meta-lens.
The total width of the waveguide with the focusing MS is 800 nm.

Fig. 4) is shown in Fig. 5 (a). This result clearly shows that the SW focusing is possible

and the intensity at the focal spot significantly stands out of the SW landscape. In the

focal point the SW intensity features 7 times raised amplitude in comparison to the whole

interference pattern on the right side of the interface. The half-width at the full maximum

of the spot size is 20 and 10 nm along the x and y axis, respectively.

The phase profile ϕ(y) and the respective A12(y) change along the y axis can be de-

signed to focus the wave also at an arbitrary position on the film. In Fig. 5 (b) we show

the micromagnetic simulation results demonstrating the off-line focusing of SWs. The in-

tensity at focal point (located at y = 150, x = 300 nm) decreases to 75% of the intensity
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in (a), but the focal size has similar size (15, 12 nm along the x and y axis, respectively).

The efficiency, defined as the ratio of intensity in the focal region (circular area with

radius of about two times of full width at half maximum48) to incident power is about

20% in the case under investigation. The efficiency of the SWs concentration is dependent

on the design, available angles of the phase shift, and is also limited by the loss of trans-

mission through the interface. Those parameters can be further optimized and proposed

metalens used for various applications in magnonics.

IV. CONCLUSION

In conclusion, we have shown in micromagnetic simulations the focusing of the SWs in

thin Co film by ultra-narrow flat phase-shifting metasurface. The proposed metasurface

exploits the RKKY exchange coupling through the Cu spacer between Co thin ferromag-

netic films to achieve the required phase shift profile along the interface. We used the

RKKY exchange coupling estimated from the experimental data and interpolated to a con-

tinuous variation on the spacer width. With properly designed metasurface the substantial

focusing of the SWs can be achieved at the arbitrarily selected point on the film. The effec-

tiveness of the focusing depends on the correct representation of the phase profile along

the interface and the type of the exchange coupling. Based on the analytical model we

conclude, that the other mechanisms of the magnetization coupling between ferromagnets

can be also exploited for designing the metasurfaces for SWs.
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