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Abstract 

Magnonic quasicrystals exceed the possibilities of spin wave (SW) manipulation offered by 

regular magnonic crystals, because of their more complex SW spectra with fractal characteristics. 

Here, we report the direct x-ray microscopic observation of propagating SWs in a magnonic 

quasicrystal, consisting of dipolarly coupled permalloy nanowires arranged in a one-dimensional 

Fibonacci sequence. SWs from the first and second band as well as evanescent waves from the 

band gap between them are imaged. Moreover, additional mini-band gaps in the spectrum are 

demonstrated, directly indicating an influence of the quasiperiodicity of the system. The 

experimental results are interpreted using numerical calculations and we deduce a simple model 

to estimate the frequency position of the magnonic gaps in quasiperiodic structures. The 

demonstrated features of SW spectra in one-dimensional magnonic quasicrystals allows utilizing 

this class of metamaterials for magnonics and makes them an ideal basis for future applications. 

 

1. Introduction 

Magnonic crystals are periodically modulated magnetic structures, which enable tailoring of 

the magnonic band structure and formation of allowed and forbidden bands in the spin wave 

(SW) spectrum.
1,2

 Additionally, the SW spectrum can easily be modified by an external magnetic 

field or a change of the magnetization configuration in the structure.
3
 This offers fine tuning and 

re-programmability,
4
 which are desirable properties for potential applications.

5
 Apart from 

periodic modulations, defects in the regular structure can also alter SW propagation. Defects can 

cause the appearance of localized SW modes with their amplitude confined to the disturbed area. 

Equally, they can introduce additional magnonic branches at frequencies inside the band gaps of 
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the SW spectrum.
6–9

 In a periodically arranged array of magnetic stripes, a stripe with differing 

dimensions can be considered and designed as such a defect. Thereby, providing an opportunity 

for the design of cavity resonators and ultra-narrow band filters.
10,11

 

Quasicrystals, unlike crystals, do not have periodicity albeit possessing long-range order, which 

results in a discrete diffraction pattern.
12

 They are characterized by more complex dispersion 

relations than those of periodic systems with an increased number of forbidden band gaps and 

narrow allowed bands. Spectra of quasicrystals also include localized excitations concentrated in 

various parts of the self-similar structure, which is a characteristic feature of such aperiodic 

systems.
13

 Previously, these properties have been widely studied in the context of photonics and 

phononics for one-dimensional (1D) quasicrystals designed by using the Fibonacci sequence.
14–16

 

Quasiperiodicity has also been applied to magnonic systems.
17–28

 Fundamental theoretical 

studies used Fibonacci structures comprised of multilayers
17–21

 or bi-component stripes
22,23

 to 

investigate the spectrum of exchange or dipolar SWs respectively. However, these hypothetical 

structures were far from experimental realization. First experimental realizations of 

quasiperiodicity in magnonics were based on groves in a micrometer thick YIG film.
24

 All 

electrical spin wave spectroscopy measurements indicated an influence of the quasiperiodicity on 

the SW spectrum.
24

 A key experimental realization of flexible magnonic quasicrystals were 2D 

arrays of Py nanobars in Penrose, Ammann, or Fibonacci arrangement.
25–28 

However, these 

studies were focused on the magnetization reversal processes and only demonstrated a rich 

ferromagnetic resonance (FMR) spectrum of these systems, hinting at a more complex SW band 

structure.
24–28

 So far, there has been no study of the microscopic behavior, propagation, nor 

localization of SWs in magnonic quasicrystals.  
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Here, we present the direct microscopic observation of propagating SWs in a 1D quasiperiodic 

magnonic structure formed by thin Py stripes arranged in a Fibonacci sequence. This is achieved 

by using scanning transmission X-ray microscopy (STXM) that provides ultimate spatial (<20 

nm) and temporal (<50 ps) resolution. Propagating modes from the first and second bands were 

detected with a band gap between them. Furthermore, the existence of a mini-band gap within the 

first band was demonstrated, showing the influence of the quasiperiodicity on the dispersion 

relation. We complement the experimental results with calculations that show good agreement 

with the resonant frequencies and profiles of the investigated modes and allow their 

interpretation. Moreover, we propose a simple model based on diffraction structure factor 

calculations, which allows to predict the frequency positions of most magnonic bandgaps in the 

SW spectra of 1D magnonic quasicrystals. 

 

2. Methods and theory 

2.1. Sample characteristics 

Nanowires (NWs, length L = 10 m) were fabricated by e-beam lithography and subsequent lift-

off in a thin Py film (Ni80Fe20, thickness d = 30 nm) on a Si3N4(100 nm)/Si substrate with 

membrane windows for X-ray transmission measurements. 100 µm wide arrays of narrow (WN = 

700 nm) and wide (WW = 2WN = 1400 nm) NWs were arranged quasiperiodically using 

Fibonacci’s inflation rule. According to this rule, a sequence of higher order n is determined by 

the sum of the two previous structures (Sn = Sn-1 + Sn-2) as shown in Fig. 1a. To ensure 

magnetostatic coupling between the NWs an air gap (WG = 80 nm) was introduced between 

adjacent NWs.
29
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For SW excitation a coplanar waveguide (CPW) made from Cu(150 nm)/Al(10 nm) with a 2 

m wide signal line was fabricated on top of the structure using direct laser lithography
30

 and a 

lift-off technique. The CPW lines are aligned along the NWs axis to excite a dynamic magnetic 

field with a component perpendicular to the array (x-axis). Additionally, a static magnetic field 

Happ was applied parallel to the NWs axis (y-axis). A sketch of the sample geometry 

superimposed with an exemplary STXM result, indicating SW propagation across the NW array, 

is shown in Fig. 1b.  

Time-resolved STXM measurements were conducted at the MPI IS operated MAXYMUS end 

station at the UE46-PGM2 beam line at the BESSY II synchrotron radiation facility. The samples 

were illuminated under perpendicular incidence by circularly polarized light in an applied in-

plane field of up to 240 mT that was generated by a set of four rotatable permanent magnets.
31

 

The photon energy was set to the absorption maximum of the Fe L3 edge to get optimal XMCD 

contrast for imaging. A lock-in like detection scheme allows sample excitation at arbitrary 

frequencies at a time resolution of 50 ps using all photons emitted by the synchrotron. 

 

2.2. Numerical calculations  

To calculate SW spectra we solve the Landau-Lifshitz (LL) equation: 

  (   )

  
      (   )      (   )     ( ) 

where t is time and r is the position vector. Damping has been neglected in the calculations. 

    (   ) is an effective magnetic field, which is assumed to be the sum of three terms: 

    (   )        (   )     (   ).    (   ) is an exchange field and    (   ) is a 

dynamic demagnetizing field with components along the x and y directions (due to the assumed 
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geometry the static demagnetizing field is 0). The    (   )  and    (   ) fields are defined in 

Ref. 
32

. 

From Eq. (1) we find the dynamical components of the magnetization  (   ) where  (   )  

  ( ) ̂   (   ). We use a linear approximation, i.e. we neglect the higher order terms arising 

in Eq. (1) with respect to  . This is justified when    is assumed to be constant in time, namely 

when | (   )|    ( ), and therefore      , where    is saturation magnetization. We seek 

solutions of the LL Eq. (1) in the form of monochromatic SWs, having harmonic dynamics in 

time:       , where f is the frequency of the SW. Eq. (1) is complemented with the Maxwell 

equations to determine the demagnetizing fields. With these equations we define the eigenvalue 

problem, which is solved by using a FEM approach with COMSOL 5.1 to obtain the dispersion 

relation and profiles of the SWs. For more details concerning this computation, we refer to Ref. 

33
. In numerical calculation we used             

  A/m, the exchange constant   

            J/m, and gyromagnetic ratio                    for Py.  
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Fig. 1 (a) Arrangement of the first sequences (S1 to S6) of Fibonacci structures consisting of Py 

NWs separated by air gaps. (b) Sample scheme with CPW (yellow) used for SW excitation and 

superimposed an exemplary STXM result. 

3. Results and discussion 

3.1. Propagating spin waves in the structure. Time-resolved STXM measurements with 

continuous wave excitation from the CPW were conducted in the frequency range from 3.6 to 6.6 

GHz (cf. Fig. 3). Magnetization dynamics from select resonances (A-F) in an applied static field 

of Happ = 5 mT are shown in Fig. 2a. In these images, the SW amplitude is indicated as brightness 

and the relative SW phase as color (cf. Fig. 2b). Additionally, the static Fibonacci structure (light 

gray) with the CPW (dark gray) are shown in Fig. 2c. 
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For all frequencies where SWs could be excited, a gradual variation of the phase along the 

propagation direction is visible in the measurements. This indicates that the SWs in the Fibonacci 

structure exhibit a propagating character. For 3.8 GHz (mode A in Fig. 2a) and 4.2 GHz (mode 

B), SW modes with strong amplitude are visible. For 4.6 GHz (marked C), however, we observed 

no excitation of SWs in the sample, indicating that an additional mini-band gap opens in the SW 

spectrum at this frequency. This agrees with our numerical calculations (as will be discussed in 

the further part) and is characteristic for waves in quasicrystals, as the spectrum is much more 

complex and can feature additional band gaps in comparison to the analogous periodic structure. 

At higher frequencies (modes D-F) we again observe SW excitation. For 4.9 GHz (mode D) and 

5.1 GHz (mode E) SWs are visible again, but at a much weaker amplitude that decays rapidly 

with distance from the signal line. However, for even higher frequencies, i.e. 5.7 GHz (mode F), 

there is again a strong signal for SW excitation. In the higher frequency band (modes D-F) the 

phase varies over a shorter distance, indicating a smaller wavelength of the excited SWs. 
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Fig. 2 (a) SW amplitude and phase for different excitation frequencies at 5 mT. The transparent 

gray rectangles mark the position of the CPW and the dashed white lines the gaps between the 

stripes. (b) Legend for SW amplitude (brightness) and phase (color). (c) Static image of the 

Fibonacci structure (light gray) with the signal line (dark gray) near the center of the image, and 

the ground lines at the top and bottom edges of the image (dark gray). See Supporting 

Information for the videos. 

 

From the measurements, we are able to estimate the decay length () of SWs propagating 

through the structure, it is from an exponential fit of the spatial amplitude distribution according 

to Aexp(-x/), where A is the SW amplitude and x is the distance from the excitation source. We 
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calculated the decay length to be  = 14±2 m, which is in good agreement with the literature 

value for Py waveguides.
34

 

To aid interpretation of the experimental results, we solved the linearized Landau-Lifshitz (LL) 

equation complemented by the magnetostatic Maxwell equations in the frequency domain, using 

a finite element method (FEM) approach as described earlier. Thereby, we obtained the 

resonance frequencies and amplitude distributions of the standing SW oscillations in the system. 

In the calculations we assumed an array of infinitely long Py NWs, keeping the thickness, widths 

and the Fibonacci arrangement (cf. Fig. 1a) from the experiment. The total size of the structure, 

i.e. the number of NWs, in the calculations is also close to the experimental sample. For the S11 

Fibonacci sequence the total width of all elements, i.e. the array size in the x-direction, is 108 µm 

compared to 100 µm for the experimental sample. 

The calculated frequencies of the SW excitations are shown in Fig. 3a as full red dots. The 

horizontal axis in Fig. 3a shows the solution number, indicating the assumed order of SW 

excitations. We are showing the first 100 solutions with the lowest frequencies. The spectrum 

starts at 3.6 GHz, which is significantly above the FMR frequency of 1.9 GHz for Py. This 

significant upshift can be attributed to the dipolar pinning of SWs
35

 on the interfaces of the 

ferromagnetic stripes that are separated by air gaps. In the spectrum (cf. Fig. 3a), we can 

distinguish a wide band gap between 5.0 and 5.8 GHz, splitting the spectrum into two parts, i.e. 

the two main bands. Below this gap there are 55 solutions, which is equal to the number of wider 

NWs (of width WW) in the whole simulated structure. This is a characteristic feature for solutions 

of the eigenvalue problem for a wave equation in finite systems and exists for periodic structures 

as well. As opposed to crystals, in quasicrystals, a number of mini-gaps additionally splits each 

band. The existence of such mini-gaps (indicated by gray horizontal bars in Fig. 3a) is a direct 
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consequence of the long-range quasiperiodic order of Py NWs coupled by magnetostatic stray 

fields.  

 

Fig. 3 Results of the numerical calculations: (a) the SW spectrum for the planar magnonic 

quasicrystal is compared to (b) the analytical SW dispersion in a homogeneous plain film with 

effective material parameters. In subfigure (a) the frequencies of the eigenmodes of the S11 

Fibonacci sequence (cf. Fig. 1) are sorted in ascending order (solid red dots). The magnonic gaps 

are marked as gray areas and the horizontal dashed lines indicate the frequencies at which the 

experimental measurements have been performed. The horizontal lines marked A to F indicate 
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the modes presented in Fig. 2. (c) The Fourier spectrum of the spatially dependent material 

parameter (e.g. MS) calculated for the considered S11 sequence. The reciprocal lattice vectors G of 

the Fourier components determine the SW’s wave vectors k for which the Bragg condition (G/2 

= k) is fulfilled. The blue arrows in (c), (b), (a) link the: (c) reciprocal lattice vectors G 

(corresponding to the Bragg peaks of highest intensity) to the (b) frequencies of the SWs in the 

effective medium, which then point at the largest magnonic gaps of the Fibonacci quasicrystal. 

The integer numbers in brackets over the highest Bragg peaks at (c) are the pairs of indexes for 

reciprocal vectors (cf. Eq. 3) of the Fibonacci quasicrystal. At (d) the amplitude and phase 

distributions of the selected modes are shown. The modes with solution number 20 and 43 are 

compared with the measured modes B and D respectively. 

 

To allow a direct comparison of the numerical solutions and the experimental results, and to 

identify the band gaps, the experimentally measured frequencies are indicated by dashed 

horizontal lines in Fig. 3a. It is clear that modes A and B fall into the lower band, explaining the 

long wavelengths of propagating SWs shown in Fig. 2a. Mode C lies in the mini-gap within the 

first band, thus, SW propagation is prohibited, corresponding to the weak SW amplitude 

measured in STXM at this frequency. For mode D, SW propagation is recovered as it occurs at a 

frequency within the band. Mode E falls in the wide main bandgap, which separates the first and 

the second band. At this frequency, only forced excitation can be observed, which is the reason 

for the strong decay of SW amplitude when moving away from the excitation source. Modes of 

even higher frequency, e.g. mode F, lie already above the main gap and originate from the second 

band. These will be discussed elsewhere.  
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For selected modes, the spatial distributions of the SW amplitude and phase are shown in Fig. 

3d. The low-frequency excitations are standing waves distributed throughout the whole simulated 

structure, whereas the number of nodes (points with a change of the sign of the phase) increases 

with frequency. The mode at the lowest frequency does not have any change of the phase sign, 

the second mode has one nodal line in the middle of the structure, and so on (see the envelope of 

the first and third solutions presented in Fig. 3d). At higher frequencies the envelope of the SWs 

becomes irregular with several maxima located in different parts of the structure, as shown in Fig. 

3d for solution number 20 and 43 corresponding to modes B and D respectively. Nevertheless, up 

to a frequency of 5.0 GHz the standing waves are solely formed from fundamental oscillations of 

single NWs, i.e. without nodal points inside NWs. This property justifies grouping of these 

modes into one main band. Thus, the last mode (solution number 55) in the first band has 

antiphase oscillations in neighboring wide NWs (cf. Fig. 4). The second band, starting at 5.8 GHz 

(solution number 58), continues the harmonic oscillation series with irregular envelopes, but all 

of the excitations from this band feature a nodal line within the wide NWs, an indicative property 

of SWs from this band.  

 

Fig. 4 Amplitude and phase distribution for solution number 55 and 58, i.e. the last mode of the 

first band and the first mode of the second band respectively (left panel). And enlargement of the 
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central part (right panel, enclosed by red dashes) with solid grey lines marking the air gaps 

between the stripes. By this, we can compare how the amplitude and the phase are distributed 

through the wide and narrow stripes in the first band, and in the second band.  

 

In Fig. 5 a comparison between the calculated and experimental out-of-plane magnetization 

component (mz) is shown for selected modes. The calculated results are superimposed as a red 

line on the experimental values shown as blue bars. Calculated profiles were adjusted to account 

for exponential SWs decay, i.e. the decay of the SW amplitude envelope with increasing distance 

from the signal line. In STXM measurements propagating SWs were detected, thus, mz changes 

in time (t) and space (x). In Fig. 5 the magnetization profile for an arbitrary time slice t0 is shown. 

For the lowest measured frequency in the first band (mode A), the sign of mz in all NWs is the 

same, except for the outmost visible stripes, which means that half of the wavelength is almost as 

long as the measurement window and about 10 µm. As expected, for higher frequencies shorter 

waves are excited. For modes B and D, half of the wavelength is observed to be 5 µm and 2.2 µm 

respectively. As mentioned earlier, mode F belongs to the second band with ~ 2.2 µm as half of 

the wavelength, however, the sign of mz changes across the wide stripes as the phase of the SW 

oscillation changes. Overall, the results of the calculations match the measured data very well, 

validating our interpretation. 
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Fig. 5 Calculated (red solid lines) and experimental profiles (blue bars) of selected SW modes. 

Vertical dashed lines indicate the positions of the air gaps between the Py NWs in the structure. 

3.2. Estimation of the band gaps and mini-gaps positions. In the SW spectrum presented in 

Fig. 3a, we have distinguished two main bands separated by a wide band gap between 5.0 and 5.8 

GHz, and a set of mini-band gaps of much smaller widths, both types were confirmed by STXM 

measurements. The formation of these gaps can be related to the Bragg scattering of SWs with 

wavenumbers fulfilling the Bragg condition. Thus, the location of the reciprocal lattice numbers 

G in the wave vector space should give us information about the position of the frequency gaps 

and mini-gaps in the spectrum.  

For a wave with wavenumber k, the Bragg condition may be written as: 

 (     )              (2) 

where h1 and h2 are integer numbers. The 1D reciprocal lattice vectors  (     ) are defined for 

the Fibonacci lattice as:
36,37

 

                   (     )  
  

 ̅
(   

 

 
  )            (3) 

where: 
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                   ̅  
 (     ) (     )

   
        (4) 

is an averaged period of the Fibonacci structure, and   
  √ 

 
 is the so called golden ratio. The 

1D reciprocal lattice numbers (3) are indexed by two integer numbers    and   . To explain this 

we recall that the Fibonacci sequence can be formed by the projection of a square lattice to a 

straight line tilted at an irrational angle  , where     ( )     . The projection is done from the 

stripe parallel to the mentioned line
37

. To obtain the reciprocal lattice vectors (3) for the 

corresponding quasiperiodic sequence of lattice nodes, obtained from the projection to the line 

inclined at an angle  ,  the Fourier transform of a square lattice (set of Dirac delta peaks) and the 

Fourier transform of the stripes (sinc function) have to be convoluted
37

. Note that for 1D 

Fibonacci structures, the reciprocal lattice vectors are densely packed numbers in 1D reciprocal 

space, due to the irrational factor 1/  in Eq. (3). The wide gap is related to the Bragg scattering of 

SWs at the smaller reciprocal number G (    ,     ). For the Py NW Fibonacci structure 

considered here,  ̅         nm and the main Bragg resonance condition (2) is fulfilled for k = 

1.6 m
-1

, which is close to the wavenumber of the experimentally detected SWs for one of the 

first modes from the second band at the edge of the main gap (1.42 m
-1 

for the 5.7 GHz, mode 

F). The gaps of smaller width are indicated by reciprocal lattice numbers G determined by other 

values of indices    and   . 

To predict the position of the gap frequencies in 1D quasicrystals we need to project the 

wavenumbers found from Eq. (2) onto the dispersion relation of SWs. Therefore we propose to 

use the dispersion relation of a homogeneous ferromagnetic film with effective parameters. The 

measured and calculated SW profiles (Fig. 5) show a strong reduction of the dynamic 

components of the magnetization amplitude close to the edges of the NWs. This proves a 
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significant dynamical demagnetizing effect, induced by the presence of NW edges, which leads 

to pinning of the dynamical magnetization and to an increase of the FMR frequency. Thus, the 

FMR frequency for the patterned magnetic system considered here with an in-plain shape 

anisotropy can be expressed with the demagnetizing factors    and      (which take values 

from 0 to 1):
38

 

                       
 

  
√(       )(   (    )  ),    (5) 

where            and          are characteristic frequencies corresponding to the 

applied field and the saturation magnetization (expressed in frequency units) respectively. 

   and   are the magnetic permeability of vacuum and the gyromagnetic ratio respectively. For 

the same parameters as in the numerical simulations, we were able to shift the FMR frequency 

     (5) to the value obtained in numerical calculations (3.6 GHz) by fitting the demagnetizing 

factor   . The relatively small value of           ensures the required upshift of       

The dispersion relation for the homogeneous film with effective material parameters and in-

plane demagnetizing effects can be calculated according to: 

 ( )  
 

  
√(              )(          (    )  )    

   (       ) , (6) 

with the exchange length   √
  

    
       nm for Py. Using the dispersion relation (6), we 

estimate the maximum value of the wavenumber             nm
-1

 for the frequency range up 

to     GHz considered in numerical calculations. The obtained dispersion relation is shown in 

Fig. 3b. By projecting the wavenumbers fulfilling the Bragg condition (2) on the dispersion 

relation  ( ) we are able to determine the expected positions of the band gaps. 
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Apart from the frequencies for which gaps open, we can also estimate the relative widths of 

these gaps. This can be done with the help of the diffraction spectra of the structure. The 

diffraction properties of any kind of structure are given by the structure factor  ( ) which can be 

estimated by Fourier transform of the spatial dependence of the material parameter, e.g. the 

saturation magnetization   , in the composite systems. We calculated the discrete Fourier 

transform of   : 

  (  )  ∑   (  ) 
         

   ,      (7)  

where     
 

 
 is the location of   (  ) in the sample in real space and    

  

 
  is the 

discretized reciprocal lattice number. The modulus | (  )| obtained for the structure considered 

here is presented in Fig. 3c. The height of the bars representing | (  )| is related to the intensity 

of the Bragg peaks of the scattered waves. The location    of Bragg peaks with large intensity 

corresponds to the frequency gaps opened at      given by  (    )      , for which the relation 

 ( ) can be found from the dispersion relation (6). The position of the highest peaks from the 

numerically calculated Fourier spectrum of the quasiperiodic structure strictly coincides with the 

wavenumbers fulfilling the analytical formula (3).  

The procedure described above allowed us to connect the structure of the magnonic 

quasicrystal with the frequency gaps in the SW spectrum, which are in good agreement with the 

results of the numerical calculations and experimental data obtained from STXM measurements.  

 

4. Conclusion 

We have experimentally observed propagating SWs in real space and time domain in 1D 

Fibonacci quasicrystals of dipolarly coupled Py NWs of two different sizes and fully recovered 
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and explained this system using numerical calculations. Thereby, we have demonstrated the 

existence of propagating SW modes in such quasicrystals, crucial for future magnonic data 

processing applications. We have shown that SW propagation is not restricted to the long-

wavelength limit, for which the structure can be considered as an effective medium, but also 

occurs at higher frequencies, for which the structure’s long-range quasiperiodic order is critical. 

Additionally, we have experimentally proven the existence of mini-band gaps that are a direct 

consequence of the collective SW effects in magnonic quasicrystals. Furthermore, a simple 

analytical method has been derived for the estimation of the magnonic gaps and mini-gaps in the 

SW spectra of 1D quasicrystals, providing a powerful tool for designing quasiperiodic systems. 

The mini-gaps are wide enough to prohibit propagation of SWs despite the finite SW damping, 

thus, offering usefulness for potential applications in the filtering of microwave signals. 

Moreover, these propagating SWs in quasicrystal structures featuring mini-gaps originating from 

a dense spectrum of diffraction peaks in reciprocal space, offering unprecedented flexibility in 

the design of effective non-linear processes,
39

 which is one of the main challenges in the 

application of magnonics to transfer and process information.
40
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