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We have investigated theoretically band structure of spin waves in magnonic crystals with periodicity in one- 
(1D), two- (2D) and three-dimensions (3D). We have solved Landau–Lifshitz equation with the use of plane 
wave method, finite element method in frequency domain and micromagnetic simulations in time domain to find 
the dynamics of spin waves and spectrum of their eigenmodes. The spin wave spectra were calculated in linear 
approximation. In this paper we show usefulness of these methods in calculations of various types of spin waves. 
We demonstrate the surface character of the Damon–Eshbach spin wave in 1D magnonic crystals and change of 
its surface localization with the band number and wavenumber in the first Brillouin zone. The surface property 
of the spin wave excitation is further exploited by covering plate of the magnonic crystal with conductor. The 
band structure in 2D magnonic crystals is complex due to additional spatial inhomogeneity introduced by the 
demagnetizing field. This modifies spin wave dispersion, makes the band structure of magnonic crystals strongly 
dependent on shape of the inclusions and type of the lattice. The inhomogeneity of the internal magnetic field 
becomes unimportant for magnonic crystals with small lattice constant, where exchange interactions dominate. 
For 3D magnonic crystals, characterized by small lattice constant, wide magnonic band gap is found. We show 
that the spatial distribution of different materials in magnonic crystals can be explored for tailored effective 
damping of spin waves. 

PACS: 75.30.Ds Spin waves; 
75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures); 
75.75.–c Magnetic properties of nanostructures. 

Keywords: magnonic crystals, spin waves, eigenmodes. 

 
 

Introduction 

Material patterning is one of the major factors used for 
controlling propagation of waves with short wavelengths in 
solids. The use of periodic patterning for controlling the 
wave dynamics has increased significantly since the dis-
covery of photonic crystals in 1987 [1,2]. Since that time 
periodicity has been extensively used for molding the flow 
of electromagnetic waves in the range from microwaves to 
optical wavelengths [3], which led to the discovery of new 
materials with properties unheard of in nature [4]. Ideas 
developed in photonics were transferred to other types of 
excitations, such as phonons [5], plasmons [6] and also 
spin waves (SWs) [7]. 

Periodicity was used for controlling SWs excitations in 
ferromagnetic materials already in 1970s [8,9]. The trans-
mission of magnetostatic waves was tailored by periodic 

distribution of the saturation magnetization, realized by ion 
implantation [10], a regular lattice of etched grooves in 
a magnetic dielectric, periodic modulation by metallic 
stripes or dots on top of a ferromagnetic film [11], or peri-
odic perturbation of the magnetic field [12]. Due to li-
mitations in fabrication and technology the investigations 
were limited to large structures, in which the dipolar inter-
action prevailed over the exchange interaction. The dis-
covery of photonic crystals renewed the interest in magnet-
ic periodic structures, inspiring many new ideas, providing 
abundant new physics, and pushing magnetization dynamics 
studies in unexplored directions. The concept of magnonic 
crystals (MCs) was proposed as a SW counterpart of pho-
tonic crystals [13–16]. MCs are magnetic structures with 
periodic distribution of the constituent materials or period-
ic modulation of some magnetic parameters (e.g. saturation 
magnetization, exchange interactions or magnetocrystalline 
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anisotropy), or other parameters relevant to the propaga-
tion of SWs, such as external magnetic field, film thick-
ness, stress or a surrounding of the ferromagnetic film. 

In any periodic medium the eigensolutions of the wave 
equation in the linear regime fulfill Bloch’s theorem and, 
regardless of the type of excitation, form a band structure 
in the frequency–wave vector space. The same applies to 
the magnonic (i.e., spin-wave) band structure. Neverthe-
less, the details of the band structure can be derived mostly 
from numerical calculations. Usually the magnonic band 
structure is studied in terms of its sensitivity to: structural 
changes of the MC, modifications of material parameters 
or application of external fields. 

SWs have a complex dispersion relation even in homo-
geneous thin film [16] which is substantially different from 
the dispersion of SWs in a bulk material. The dispersion 
depends on the direction and magnitude of the wave vec-
tor, the relative strength of short-range exchange interac-
tion with respect to the strength of long-range dipolar in-
teraction, the external shape of the sample, the magnitude 
of the applied static magnetic field and its orientation in 
relation to the direction of SWs propagation. Also the mag-
netocrystalline anisotropy and magnetoelastic effects con-
tribute to SWs dynamics. This means that the SW band 
structure of MCs will be influenced by many additional 
factors, both intrinsic and external ones, apart from those 
which are typical for the other types of artificial crystals. 
This makes MCs an intriguing system for scientific studies 
and the main subject of research in the field of magnonics [7]. 

This paper is dedicated to present various spin wave band 
structures which can be realized in MCs to demonstrate inter-
esting properties of SWs resulting from the periodicity. We 
present the results of calculations for one-dimensional (1D), 
two-dimensional (2D) and tree-dimensional (3D) MCs ob-
tained with different numerical methods. All spectra are ob-
tained by solving Landau–Lifshitz (LL) equation. The plane 
wave method, finite element method in the frequency do-
main and micromagnetic simulations based on finite dif-
ference method in the time domain are demonstrated to be 
complementary for calculations of the SW spectra in MCs. 

Model and wave equation 

The dynamics of SWs can be analyzed using two main 
theoretical approaches [18]. One uses the discrete lattice 
model based on Heisenberg Hamiltonian with atomic 
structure of the ferromagnetic material directly taken into 
account. The other is based on solutions of the LL equation 
defined in continuous medium which describes precession 
of classical magnetic moments in effective magnetic field. 
The later approach is more suitable for systems with com-
plex geometry in nano- and larger scales, where local pa-
rameters (exchange integral, spin) can be expressed by 
macroscopic parameters (exchange length and magnetiza-
tion saturation) [19]. The typical spatial resolution of nano-

litography techniques is order of magnitude larger than 
interatomic distances. This justify use of an approach based 
on LL equation to these structures, which are widely fabri-
cated nowadays [20]. 

We solve the LL equation, i.e., the equation of motion 
for the magnetization vector ( , ):tM r  

0 eff
( , ) ( , ) ( , )t t t
t

∂
= −γµ × +

∂
M r M r H r  

 [ ]0
eff( , ) ( , ) ( , ) ,

S
t t t

M
αγµ

+ × ×M r M r H r  (1) 

where γ  is gyromagnetic ratio, eff ( , )tH r  denotes effec-
tive magnetic field, 0µ  is permeability of vacuum, r  is 
position vector, t  is time and SM  is saturation magnetiza-
tion. Relaxation processes are described by the last term on 
the right-hand side of the Eq. (1). We assume that MC is 
saturated, i.e., a collinear static magnetization in all the 
investigated structures is assumed. In this paper we use a 
coordinate system with the z axis being the direction of the 
external magnetic field and also the direction of the static 
magnetization in the saturated state. 

In the case of small disturbance of the magnetization 
from its equilibrium orientation, linear SWs are generated 
and the calculations can be conducted in linear approxima-
tion. In this case the component of the magnetization vec-
tor along equilibrium direction (z axis) is constant in time 

ˆ[ ( , ) ( ) ( , )]zt M z t= +M r r m r  and can be approximated by 
spontaneous magnetization ( ) ( )z SM M≈r r . This assump-
tion requires much larger magnitude of zM  than those of 
the perpendicular components: ( , )  ( ),St Mm r r  where 

( , )tm r  is a two-dimensional dynamic vector lying in the 
(x, y) plane: ˆ ˆ[ ( , ) ( , ) ( , ) ].x yt m t x m t y= +m r r r  

The effective magnetic field is assumed to be the sum 
of three terms: eff 0 ms ex ,= + +H H H H  where 0H  is the 
external static magnetic field; msH  is the magnetostatic 
field with two components: static demagnetizing field 

dem ( )H r  and dynamic components ( , )th r  that are perpen-
dicular to 0:H  ms dem[ , , ];x yh h H=H  exH  is the exchange 
field which can be formally defined in saturation using 
linear space dependent exchange operator ex

ˆ :H  
ex ex

ˆ( ) ( ) ( ).=H r H r m r  We neglect the contribution of the 
magnetic anisotropy. 

In magnetostatic approximation the magnetostatic field 
can be expressed as a gradient of the scalar magnetostatic 
potential: ms ,= −∇ϕH  thus the curl of magnetostatic field 
(the one of the Maxwell equations) is always equal to zero: 

ms 0.∇× =H  In order to find the dynamic components of 
the demagnetizing field ( , ),x yh h  we need to solve the 
Gauss equation: ms[ ( ) ( )] 0.∇⋅ + =H r M r  Putting to the 
Gauss equation magnetostatic field written as the gradient 
of ϕ  we receive equation: 

 2 ( )( ) ( )
( ) . yx Smm M

x y z
∂∂ ∂

∇ ϕ = + +
∂ ∂ ∂

rr r
r  (2) 
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This equation defines the relation between magnetostat-
ic potential (and magnetostatic field) and the magnetiza-
tion. This shall be solved together with Eq. (1). 

In Eq. (1) with linear approximation we can separate 
space and time variables. Then, the time dependent equation 
has solutions in the form of monochromatic spin waves: 

( , ) ( , ) e i t
x yt m m − ω= ∝m r  (similar for dynamic compo-

nents of the magnetostatic field ( , ) ( , ) e i t
x yt h h − ω= ∝h r ), 

where ω is the angular frequency of SW. Thus, the mono-
chromatic SW is a solution of the following equations: 

 0 dem( ) ( (  ) )Ω x y yi m H m H m= + −r r r   

S ex( ) ( ) ( ) ( )  ( ), y S yM h M m− −r r r H r r   

 0 dem( ) ( ) (Ω  )y x xi m H m H m− = + −r r r   

 ex( ) ( ) ( )  ,( ) ( )S x S xM h M m− −r r r H r r  (3) 

where 
0

Ω ω
=
γµ

 is reduced angular frequency of the SW. 

Planar magnonic crystals 

The simplest MC is a 1D periodic structure which has 
a form of magnetic multilayers [21]. These systems were 
intensively studied in the past and their fundamental fea-
tures are well-understood using both discrete and continu-
ous models [22]. More complex spin wave dynamics 
can be observed in planar structures with in-plane period-
icity [23,24]. The planar geometry is the most common for 
the nano- and microstructures fabricated using top-down 

techniques (e.g. nanolithography) [20]. The obtained struc-
tures can possess long-range order of high precision, which 
is crucial to explore the effects of the periodicity in SW 
dynamics. On the other hand, the bottom-up methods [25], 

are effective by utilizing processes of self-organization, 
however they often fail in fabrication of ideal 2D and 3D 
periodic systems because of incontrollable defects and dis-
location. Because of the mentioned above reasons, both 
high quality 1D and 2D MCs are fabricated mainly in the 
form of planar systems with in-plane dimensions much 
larger than thickness of the structure [26]. 

MCs, as any other kind of periodic medium, has aniso-
tropic dynamics (according with symmetry of the structure) 
but the geometry is not the only source of the anisotropy in 
SW dynamics. An inhomogeneity of the static magnetiza-
tion distribution induces demagnetization and exchange 
fields, the additional two factors which influence the SW 
dynamics. In MCs these magnetic fields have also periodic 
distribution, however they introduce additional inhomoge-
neity and anisotropy which can reduce symmetry of the 
lattice. The other factor which is inevitable for magnonic 
systems is an external magnetic field which can be arbitrar-
ily oriented with respect to the crystallographic lattice axes 
or MC plane. The magnetic ground state (spatial distribu-
tion of the static magnetization) can be very complex in 
MCs at low external magnetic field, below the saturation 
field. The investigation of SW dynamics in such system is 
complicated, because of complexity of the ground state and 
presence of remagnetization processes. To design MCs 
with desired SW dispersion, the stable magnetic configura-
tion is usually required. Strong enough magnetic field can 
be always used to enter system in saturation state. Under 
this condition, the external magnetic field determines the 
direction of the static magnetization, which is almost ho-
mogeneous and constant in different pieces of the same 
material. The magnetization dynamics can be then mostly 
attributed to SWs. 

Plane wave method 

In this section we present an adaptation of the plane 
wave method (PWM) to the calculations of the SW disper-
sion relation in planar MCs with 2D periodicity. The gen-
eral algorithm of this method is presented schematically in 
Fig. 1. If surface magnetic anisotropy on the surfaces of 
the MC is neglected and the thickness of the planar MC is 
small then the magnetocrystalline and dipolar pinning on 
its top and bottom surfaces is week. Therefore, we can as-
sume that the magnetization is free on film’s surfaces. 
Moreover, because the ratio of the period to thickness for 
the MC is small, the lowest magnonic bands will represent 
the modes which are not quantized across thickness of 
the MC. These two assumptions allow to consider the SW 
amplitude as constant across the slab thickness in thin planar 
MCs. Using this approach we will proceed with PWM, 

Fig. 1. (Color online) Algorithm of the PWM to calculate 
the dispersion relation of SWs and their amplitude distribution in 
magnonic crystal. It is split into two parts, analytical derivation 
of the algebraic eigenproblem and numerical solutions. 
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which applies 2D Fourier transform to linearized LL Eq. (3) 
supplemented with Gauss Eq. (2) and converts this equa-
tions into the algebraic eigenproblem. This consist first 
part of the algorithm presented in Fig. 1. 

To illustrate PWM, we will discuss the solution for the 
system presented in Fig. 2. This is a square lattice (with 
lattice constant a) of the square dots (of side size s). Dots 
(ferromagnetic material A) and matrix (ferromagnetic ma-
terial B) are saturated by the in-plane external magnetic 
field. The solutions of Eq. (3), which is differential equa-
tion with coefficients being periodic function of the posi-
tion vector, can be written in the form of the Bloch waves: 

 ( ) ( )e ,i ⋅= k r
km r m r  (4) 

where (0, , )x yk k=k  is the wavevector and ( )km r  is an 
SWs complex amplitude with the same periodicity as the 
lattice of the MC, ( ) ( )+ =k km r a m r  , (0, , )y za a=a  and 

ya  and za  are components of a two dimesional lattice vec-
tor. For a given wave vector k, we expand the periodic 
factor of the Bloch function ( )km r  and material parame-
ters (i.e., saturation magnetization and exchange constant) 
in the basis of the plane waves:  ei ⋅G r  

( ) ( )   ( )e  and   ( )ei i
S SM M⋅ ⋅= =∑ ∑G r G r

k k
G G

r m G r Gm  (5) 

where G  is a reciprocal lattice vector, which for the square 

lattice takes the values: 2(0, , ) (0, , ),y z y zG G n n
a
π

= =G  

with ,y zn n  being integers. 

Also, in Eq. (2) the magnetostatic potential can be rep-
resented as a Bloch function, and its periodic part can be 
expanded in Fourier series, together with SM  or Bloch 
functions [ ( ), ( )]y xm mr r  included in this equation. The so-
lution of Eq. (2) for static demagnetizing field in the pla-
nar structure with piecewise constant magnetization of ar-
bitrary orientation was derived by Kaczer et al. in Ref. 27. 

These formulas were extended to dynamical components 
of the magnetization in the form of the Bloch function (4) 
in Ref. 28. Finally, dm, ( )zH r  and ( ), ( )x yh hr r  can be ex-
pressed as a function of the Fourier coefficients ( ),  SM G  

( ) xm G  and ( )ym G  in the following form: 

 ( ) ( )
2

dm 2
( )

1 , e ,iS zM G
H S x ⋅= − −  ∑ G r

G

G
r G

G
 (6) 

 ( ) ( ) ( ), ,y y
x y

k G
h im S x

+
= + −

+
∑ k
G

r G k G
k G

  

 ( ) ( ) ( )
, , e  ,i

xm C x + ⋅ 
− + 



k G r
k G k G  (7) 

 ( ) ( ) ( ), ,  y y
y x

k G
h im S x

 +
= + −
 +

∑ k
G

r G k G
k G

  

 ( )
2

,
2

( )( )
[1 ( , )] e ,y y y im k G

S x + ⋅
+
− − +
+ 

k k G rG
k G

k G
 (8) 

where 

2( , ) sinh ( )e ,
d

S x x
−

=
κ

κ κ    2( , ) cosh ( )e
d

C x x
−

=
κ

κ κ  

and d is the MC’s thickness. 
In PWM we use exchange field in the form 

 2
ex ex2

0

2  ,( ) ( ) ( )
S

A l
M

  
 = ∇ ⋅ ∇ =∇ ⋅ ∇   µ  

H m r r m r   

where ( )ex 2
0

2  
S

Al
M

=
µ

r is the exchange length. The ex-

pression in the square brackets is the exchange operator. 
According to Bloch theorem (4) and using the expan-

sions (5)–(8), the Eq. (3) can be transformed into the alge-
braic eigenproblem, which finalize the first part of the al-
gorithm shown in Fig. 1: 

Fig. 2. (Color online) (a) The schema of the structure of bi-component planar magnonic crystal. Square lattice (lattice constant, a) of 
square shaped dots (with size s) immersed in ferromagnetic material B. The MC is saturated by external magnetic field along the z-axis. 
(b) Reciprocal lattice of the square lattice with the first Brillouin zone marked with red dotted line. The irreducible part of the Brillouin 
zone is marked with bold solid line. 
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 ˆ .i= Ωk kMm m  (9) 

The eigenvector , ,[ , ]=k k km m mx y  consists of the two 
sub-vectors being the finite sets (of N elements) of Fourier 
coefficients for periodic factor of the Bloch functions: 

 , , 1 , 2 ,[ ( ), ( ), , ( )]x x x x Nm m m=k k k km G G G  and  

 , , 1 , 2 ,[ ( ), ( ), ,  ( )].y y y y Nm m m=k k k km G G G   

The matrix M is a block matrix 

 ˆ .
xx xy

yx yy

M M

M M

 
 =
 
 

M  (10) 

The blocks of the matrix (10) are defined as: 
_____________________________________________________ 

 ( ) ( ), , ,
+

y y j yyxx
ij S i j j ij

j

k G
M i M S x M

+
= − − + = −G G k G

k G
  

 ( ) ( ) ( ) ( )
( ) ( ) ( )

2
,2

0 ex 2 1 ,
y y jxy

ij j l l j S i l S i j jij
l j

k G
M H l M M S x

+
 = δ + + ⋅ + − − + − − + − 

+
∑ k G k G G G G G G G k G

k G
  

 
( ) ( ) ( )

2
, ,

2 1 , ,
z i z j

S i j i j
i j

G G
M S x

+
 − − − + 

−
G G

G G
G G   

 ( ) ( ) ( ) ( ) ( ) ( )2
0 ex ,yx

ij j l l j S i l S i j jij
l

M H l M M C x= − δ − + ⋅ + − − − − + +∑ k G G G G G G G G k Gk   

 
( ) ( ) ( )

2
, ,

2 1 , .
z i z j

S i j i j
i j

G G
M S x

+
 + − − + 

−
G G G G

G G
  

________________________________________________ 

i and j index reciprocal lattice vectors used in the Fourier 
expansions. For the numerical solution of the Eq. (9), we 
need to limit a number of the reciprocal lattice vectors in 
all expansions and also calculate the coefficients of the 
Fourier expansion (5) of the magnetization saturation and 
exchange length, ( )SM G  and 2

ex ( ),l G  respectively. The ge-
neral formula for the coefficients of Fourier expansion 
reads: 

 ( ) ( )
 1 e ,i

S

F F dS
S

− ⋅= ∫ G rG r   

where ( )F r  and ( )F G  are periodic functions in real space 
describing the spatial distribution of material parameter 
(this is ( )SM r  or 2

ex ( )l r  in Eq. (3)) and its Fourier expan-
sion coefficient for reciprocal lattice vector G  (this is 

( )SM G  or 2
ex ( )l G  in eigenvalue problem Eq. (9)), respec-

tively. The S denotes the area of the unit cell. The Fourier 
coefficients for MC with inclusions of the regular shapes 
can be analytically calculated. For instance for 2D MC 
with inclusions of circular and square shapes, the coeffi-
cients cir ( )F G  and sq ( )F G  take the following form: 

 ( )
( )

( ) ( )

2

2cir
1

for 0,
1

2 for 0,

B A B

A B

F F F R
F RS F F J RG

G

 + − π =
=  π

− ≠


G
G

G
  

( )

( )

( )

( )

( )

2

2

sq 2

2

for  0,

sinc for 0, 0,
2

1
sinc for 0, 0,

2

sinc sinc for  ,
2 2

  

0

B A B

x
A B x y

y
A B x y

yx
A B

F F F s

G s
F F s G G

G sF
S F F s G G

G sG s
F F s

 + − =

  − ≠ =  

 =  
− = =   

 
    − ≠        

G

G

G

  

where R is the radius of circular inclusions, G stands for 
the length of the reciprocal lattice vector G  and 1J  denotes 
the Bessel function of the first kind. AF  and BF  stands for 
the respective values of saturation magnetization (or ex-
change length) in the inclusion material and host material, 
respectively. For the square lattice 2S a=  (Fig. 2(a)). 

The algebraic eigenproblem (9) is solved numerically 
using standard routines to find eigenvalues and eigenvec-
tors, and this constitute the second part of the algorithm. 
The solutions are eigenvalues Ω,  from which frequency f 
of the SW modes for given k-vector are obtained, and ei-
genvectors ,km  which are used to obtain distribution of 
the SW amplitude in real space, ( ).km r  The dispersion 
relation is found by solving eigenproblem (9) repetitively 
for successive values of the k along the high symmetry 
path in the first Brillouin zone (BZ). For square lattice this 
path is marked with red dotted line in Fig. 2(b). 
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Magnonic band structure in thin 2D MCs 

The spectrum of MCs can be tailored by adjustment of 
structural and material parameters. The following parame-
ters can be considered for system presented in Fig. 2: mate-
rial composition of the matrix and inclusions, lattice con-
stant a, size s and shape of the inclusions, and also the 
thickness of the slab d. It is worth to notice that due to in-
terplay between dipolar and exchange interactions, the 
spectrum of magnonic crystals do not scale with the size of 
the system, as it is in photonic systems [3]. To demonstrate 
basic changes in the magnonic band structure due to struc-
tural parameters, we investigate the variation of the abso-
lute values of structural parameters but only their relative 
changes, even if we are interested in exploring qualitative 
features of the magnonic spectrum. Let’s consider MCs in 
two different limits of sizes [29]: exchange dominated re-
gime — for small lattice constant and dipole dominated 
regime — for larger patterns. In Fig. 3 we present results 
of PWM calculations for MC with small lattice constant 
(a = 50 nm) for various shapes of inclusions: square, hex-
agonal and circular, with fixed filling fraction 0 55,( .ff =  
the filling fraction is defined as a ratio of the area occupied 
by inclusion to the area of the unit cell, for structure from 
Fig. 2 this is 2 2 / ).ff s a=  The first magnonic band does not 
change significantly with the changes of the shape of in-
clusions. Also the corresponding profiles of dynamical 
magnetizations, which don’t reproduce all details of the 
inclusions, are similar. In this range of sizes, the exchange 
interactions, which are isotropic in terms of external field 
direction, dominate. This property makes the MC a close 
counterpart of the photonic crystal and allows to deduce 
a lot of its features in analogy to photonics. However, the 
impact of dipole interactions is still noticeable in these 
MCs. We can observe differences in the dispersions for the 
equivalent crystallographic directions — cf, the dispersion 
of the first band along Γ–X and Γ–X′, parallel and perpen-
dicular to the external magnetic field. 

Figure 4 presents the dispersions for planar MCs of 
larger sizes (lattice constant a = 400 nm), with important 
influence of the dipole interactions. We observe the dra-
matic change of the magnonic spectra for systems differing 
in the shape of inclusions (note that we kept the filling 
fraction constant for the three considered shapes). The one 
of the most important factors responsible for such differ-
ences in the SW spectra is the static demagnetizing filed 
(see the right insets in Fig. 4). This field has a form of 
sharp wells/peeks located at the interfaces of materials 
differing in magnetization saturation. The amplitude of 
demagnetizing field depends both on the magnetization 
contrast (on both sides of interface) and the orientation of 
the interface with respect to the direction of the external 
magnetic field. The later feature is shape-dependent. The 
strongest impact of the demagnetizing field is noticed for 
the system with square inclusions where long sides of 

squares are oriented perpendicularly to the direction of H0. 
This induces deep and long wells of demagnetizing fields 
which can capture the modes and localize them. These 
modes (in Fig. 4(a) modes 1 and 2) are called edge modes 
and have frequency below the frequency of the fundamen-
tal mode. 

We discussed the PWM and its adaptation to calcula-
tion of the SW dispersion relation in the planar MC. One 
of the assumption we have made was about homogeneity 
of the sample across its thickness. However, there are pla-
nar MCs which are nonuniform in out-of-plane direction, 
e.g. magnetic slab with an array of grooves or with mag-
netic dots on its surface. In these cases, this assumption 
can be avoided, if the slab is with tiny periodic modulation 
on its top surface. Then we can apply the method presented 
in Ref. 31 where the Walker equation [18] with modulated 

Fig. 3. (Color online) (a) Dispersion relation for planar MC 
formed by Ni inclusions embedded in Fe matrix in the small lat-
tice constant regime (a = 50 nm). The filling fraction was fixed to 
the value 0.55 for different shapes of inclusions. Both, the disper-
sions (a) and (b) the profiles of the out-of-plane component of 
dynamical magnetization do not show significant difference for 
the systems with different shapes of inclusions. We presented only 
the profiles for the first (bottom row) and the second (top row) band 
in the center of the Brillouin zone (Γ point). The thickness of 
the slab is 5 nm. The external field magnitude is 50 mT. The fol-
lowing values of the material parameters were assumed: MS,Fe = 
= 1.752⋅10–6 A/m, lex,Fe = 3.30 nm, and MS,Ni = 0.484⋅10–6 A/m, 
lex,Ni = 7.64 nm. The gyromagnetic ratio is assumed to have 
the same value: γ = 176 GHz/T for both materials [30]. 
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boundary conditions was solved in the plane wave basis to 
find magnonic spectrum in the magnetostatic approxima-
tion. The planar MCs of more sophisticated geometry, with 

competing magnetostatic and exchange interactions can be 
investigated using other methods. In the next two sections 
we demonstrate finite element method in frequency do-
main and micromagnetic simulations with time domain fi-
nite difference used to calculate magnonic band structure 
in planar 1D MC with inhomogeneity across the thickness 
taken into account. 

Finite element method in frequency domain 

In calculations which take into account the inhomoge-
neity of the magnetization across the MC thickness we 
considered planar 1D MCs. The schematic structure con-
sidered here is shown in Fig. 5(a). It is composed of infi-
nitely long cobalt (Co) and permalloy (Py) stripes. Co and 
Py stripes are placed side by side. Their dimensions are the 
same: thickness d = 30 nm and width aCo = aPy = 100 nm, 
the lattice constant is a = 200 nm. The external magnetic 
field is directed along the stripes and has the magnitude 

0 0 0.1Hµ =  T. The material parameters of Co and Py are as 
follows: Co saturation magnetization MS,Co = 1.45⋅106 A/m, 
Py saturation magnetization: MS,Py = 0.7⋅106 A/m; Co ex-
change constant: ACo = 3⋅10–11 J/m and Py exchange con-
stant: ACo = 1.1⋅10–11 J/m. Studied configuration, in which 
external magnetic field is directed along the stripes (the z-
axis), and SW propagation is perpendicular to the stripes 
(along the y-axis) in the film plane, is called Damon–Eshbach 
(DE) geometry [18]. For this geometry the static demagnetiz-
ing field equals to zero: dem 0.H =  Structure is finite in the x 
direction, which is a thickness of the structure. 

The finite element method (FEM) is a numerical tech-
nique for finding approximate solutions to boundary value 
problem for partial differential equations. It uses subdivi-

Fig. 4. (Color online) Dispersion relation for planar 2D MC formed 
by Fe inclusions of (a) square, (b) hexagonal, (c) circular shape em-
bedded in Ni matrix in square lattice with lattice constant a = 400 nm. 
The filling fraction was fixed to the 0.55 for different shapes of inclu-
sions. The profiles of the out-of-plane component of dynamical mag-
netization for five lowest modes in the center of the Brillouin zone 
are presented in the bottom row in each figure. The spectra and pro-
files depends significantly on the shape of inclusion due to the impact 
of the demagnetizing field dem

zH  (the insets on the right of each 
figure). The thickness of the MC is 20 nm. The external field H0 
along the z-axis has magnitude 100 mT. The material parameters 
were assumed the same as in Fig. 3 [30]. 

Fig. 5. (Color online) (a) 1D MC composed of parallel alternately 
ordered, connected witch each other Co and Py stripes (the stripes 
have thickness d and width aCo and aPy; lattice constant is a = aPy + 
+ aCo). The stripes are magnetically saturated along the z-axis by 
the external magnetic field H0. (b) The unit cell of the 1D MC used 
in FEM computations. Periodic Bloch boundary conditions (PBC) 
are assumed along the y axis. (c) The computational area used in 
FEM. This area extends to large distance along the x axis above and 
below of the MC. At the borders of this area the magnetostatic 
potential takes the value 0. 
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sion of a computational domain into smaller parts, called 
finite elements (the computational domain used in our 
computations is shown in (Fig. 5(c)). FEM encompasses 
simpler methods for connecting many elementary equa-
tions over small subdomains (finite elements), to approxi-
mate solution of the complex equation over a large domain. 
This procedure can be easily realized using commercial 
software COMSOL Multiphysics. Derivation of the proper 
equations for COMSOL Multiphysics solver which will be 
used to solve LL equation in linear approach complement-
ed with Maxwell equations is presented below. 

To take into account appropriate electromagnetic 
boundary conditions for magnetostatic potential we con-
sidered MC which is surrounded by the nonmagnetic die-
lectric above and underneath the structure (Fig. 5 (c)), and 
assumed 0ϕ =  at the borders of the computational area, 
which are far from the MC. The magnetostatic potential 
shall fulfill Gauss Eq. (2) and because 0/SM z∂ ∂ =  we get 

 2 ,yx mm
x y

∂∂
∇ ϕ = +

∂ ∂
 (11) 

and from Eq. (3) we get 

 
( )

( )
0 ex,

ex, 0
 Ω . 

y S y yx

y S x x x

H m M h Hm
i

m M h H H m

 − +   =   + −   
 (12) 

We take here advantage of the Bloch theorem and assumed 
periodic boundary conditions (PBC) along the y direction. 
PBC are applied on the boundaries of the unit cell com-
posed of Co and Py stripes, which is shown in Fig. 5(b). 
Solutions of Eqs. (11) and (12), according to Bloch’s theo-
rem for dynamic components of the magnetization, are in 
the form of Eq. (4) with km



 being periodic functions of y 
and dependent on x (i.e. across the thickness of the struc-
ture). Similar form for magnetostatic potential is taken: 

 ( ) ( ), , e ,yik yx y x yϕ = ϕ  (13) 

where ϕ  is a periodic function of y and depends also on x. 
yk  is a Bloch wavenumber, which can be limited to the 

first Brillouin zone, i.e., to the range from π/a−  to π/ .a  Due 
to symmetry of the structure, this range can be further re-
duced to (0,π/ ).k a∈  Substituting Bloch functions of m 
and ϕ  (Eqs. (4) and (13)) to the system of Eqs. (11)–(12) 
we obtain the eigenvalue problem which is solved with the 
use of COMSOL 4.3a. 

According to literature, we used the exchange field in 
the form appropriate for FEM calculations [46,49]: 

 ( )ex
0

1 2 .
 S S

A
M M

  
= ∇ ⋅ ∇  µ   

H m r   

This formulation of the exchange field superimposed on 
the interfaces between magnetic materials introduces con-

tinuity of the dynamic magnetizations im  and i

s

mA
M x

∂
∂

. 

The solutions of Eqs. (11) and (12) satisfy also electro-
magnetic boundary conditions on the interfaces between 
magnetic materials and dielectric imposed by the Maxwell 
equations (i.e., tangential H component and normal B com-
ponents are continuous). 

Magnonic band structure calculated with FEM is shown 
in Fig. 6 with solid diamonds. The significant dispersion is 
visible for the first band, the second band is folded-back 
from the second BZ and has opposite slope. The third band 
has again positive slope. Between bands are magnonic 
band gaps. Width of the gap between 1st and 2nd band 
amounts to 3 GHz. This magnonic band structure is similar 
to the one measured by Brillouin light scattering experi-
ment for 1D MC composed of Co and Py stripes but with 
lattice constant equal to 500 nm [22]. The identification of 
the SW excitations related to the bands can be made by the 
analysis of the SWs’ amplitudes. These are obtained direct-
ly from FEM calculations as eigenvectors. 

The spatial distribution of the selected modes on the 
( , )x y  plane is shown in Fig. 7. The 1st mode is a funda-
mental mode without any nodal points in the BZ center. 
For this mode, the SW amplitude is higher in Py than in 
Co. It results from the fact that the frequency range 

Fig. 6. (Color online) Dispersion relation of SWs in 1D MC. Blue 
lines correspond to the results obtained in micromagnetic simula-
tions. Red diamonds mark the results obtained using FEM calcu-
lations in frequency domain. The vertical dashed line points 
the BZ boundary. 

Fig. 7. (Color online) Distribution of the SW amplitude’s modu-
lus in the unit cell of the 1D MC composed of Co and Py stripes 
calculated with FEM. The amplitude for the 1st, 2nd, 3rd and 4th 
SW mode in the BZ center (a), for 0.5 /yk a= π  (b) and in the BZ 
border (c) of the dispersion relation from Fig. 6 is shown. 

966 Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 



Magnonic crystals — prospective structures for shaping spin waves in nanoscale 

(around 9 GHz) of 1st band is well below FMR frequency 
of Co. It means that oscillations in Co stripes can be re-
garded as forced by the magnetization oscillations in Py. 
The modes with increased frequency have increased num-
ber of nodal points. For instance the 3rd mode which has 
two nodal points in the Py stripes, still don’t have oscilla-
tions of the amplitude in Co. Interesting is also the 4th 
band. This mode has the nodal point across the thickness of 
the Py stripe (see, Fig. 7). This type of the excitations are 
named perpendicular standing spin waves (PSSW). Due to 
oscillations of the magnetization on short distance, ex-
change interactions determine their properties. The oscilla-
tions in neighbor Py stripes are not coupled via Co and the 
band does not change frequency with increasing .yk  How-
ever, for modes 1, 2 and 3 the change of the amplitude 
with increasing wavenumber is found. We can distinguish 
two kinds of changes with increasing Bloch wave vector 
ky. First is associated with the change of the phase in the 
plane wave envelope of the Bloch function Eq. (4). At the 
BZ boundary (Fig. 7(c)) /yk a= π  and the phase of the 
oscillations changes sign in the neighbor unit cells. Be-
cause harmonic oscillations appear only in Py, the zero of 
the SW amplitude in Co stripes for 1st and 3rd modes, and 
nonzero for the 2nd mode is observed at the BZ boundary. 

The second kind of change is caused by surface charac-
ter of the DE wave [32]. In the homogeneous film the 
strength of the DE wave localization at the surface is pro-
portional to the wavenumber. Thus, increase of the yk  shall 
result in the surface localization of the SW also in MCs. 
Indeed, we observe asymmetric distribution of the SW 
amplitude across the thickness of the MC in the middle of 
the first BZ (Fig. 7(b)). The amplitude is larger at the top 
surface for the 1st and 3rd mode, and at the bottom surface 
for the 2nd mode. This distribution of the amplitude links 
results of the periodicity and non-reciprocity of the DE 
wave. The DE wave propagating in the positive y direction 
(for H0 field pointed at positive z axis) is localized at the 
top surface of the film, whereas the wave propagating in 
opposite direction is localized at the bottom surface. 2nd 
mode in the first BZ is obtained from the mode with 

 0.75 /yk a=− π  (in the second BZ along negative direction 
of the wave vector) translated with reciprocal lattice vector 

2 /  G a= π  to the first BZ, thus this mode is localized at the 
bottom surface of the MC. 3rd mode is obtained from 
wavenumber 1 .25 /yk a= π  (3rd BZ) by translation with 

2 /  G a= − π  to the first BZ. Thus, it is localized at the top 
surface and has larger localization than the 1st mode. The 
asymmetric distribution of the SW amplitude is lost at the 
BZ border, because at this wavenumber the superposition 
of the two counter-propagating waves is formed. 

The results of the frequency domain FEM calculations 
will be verified by micromagnetic simulations in the fol-
lowing section. 

Micromagnetic simulations in time and real space 
domain 

Micromagnetic simulations (MMS) are very effective 
computational techniques extensively used for calculations 
of the magnetization dynamics in nano- and micro-sized 
ferromagnetic structures [33–39]. MMS are designed for 
solving numerically full LL Eq. (1) in the time domain and 
real space. There are many different MMS computational 
environments. They usually use one from the following nu-
merical methods: Finite Difference Method (FDM) or FEM. 
Here, we use GPU accelerated MuMax3 software which is 
based on FDM with cuboidal space discretization [35]. 

Analysis of the SWs dynamics in time domain is very 
complex and time consuming task. The ideal situation is a 
single run of simulation which gives the full information 
about SWs dynamics and can be used to generate disper-
sion relation. However, in many cases, the results of several 
MMS are needed to obtain the dispersion relation of suffi-
ciently fine resolution in frequency and wave vector do-
main, containing as many as possible branches of SW 
modes. In this section, the procedure for generation disper-
sion relation, based on MMS, will be described. That pro-
cess will be exemplified by generation of the dispersion in 
1D MC (Fig. 5(a)). The dispersion relation for this system, 
evaluated using FEM in frequency domain, was already 
discussed in the previous subsection. 

MMS are performed in two stages. During the first 
stage, which can be called static simulations, equilibrium 
magnetic configuration is obtained. Then, this configura-
tion is used as a starting point of the second stage, called 
dynamic simulations. During this step the static magnetic 
configuration is disturbed by adding relatively small (to 
stay in the linear regime and do not destroy equilibrium 
configuration) dynamic magnetic field. The dynamic field 
is usually directed orthogonally to the effective magnetic 
field. This perturbation of the magnetic field in turn induc-
es coherent magnetization precession around the equilibri-
um direction. The form of dynamic magnetic field deter-
mines character of the excited SWs. It is important to use 
dynamic field which will excite as many SWs modes of 
different symmetries as possible, to collect information 
about full spectra of the SWs excitations. There are many 
possibilities of SWs excitations [40]. Very useful for that 
purpose are excitations in form of the sinc function, be-
cause sinc function is transformed in Fourier space to a 
window function. Here, we use dynamic magnetic field in 
form of product of two sinc functions (in space and time 
domain): 

( )dyn , , ,t x y z =b  

 ( ) ( )0 cut 0 cut 0 ˆsinc  sinc 2  ,b k y y f t t n   = − π −     (14) 

where 0b  is the maximal value of the magnitude appearing 
at time 0t  and at point 0y  along the periodicity direction, n̂ 
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is the unit vector perpendicular to the static magnetization. 
The 0b  should be small enough to stay in linear regime. 

Space discretization of the MC and time steps for mag-
netization dynamics, as well as total size of the structure 
and total time of simulations, determine the correctness of 
MMS and the resolution of magnonic band structure. How-
ever, the requirement of the high resolution shall be com-
promised with the size of the computational problem to 
handle it with available computer resourcers. Maximal 
value of the frequency taken into account in MMS is 

max samp1/(2Δ ) f t=  and maximal value of the wave vector 
is max samp/Δ ,k y= π  where sampΔt  is an interval in time 
sampling and sampΔy  is an interval in space sampling. Re-
solution of the dispersion relation (in the frequency and 
wave vector space) is determined by number of sampl-
ings taken into account: max samp simΔ 2 Δ /f f t t=  and 

max sampΔ 2 Δ ,/ yk k y L=  where Δf  and Δk  are frequency 
and wavenumber steps in dispersion relation, simt  is total 
time of the simulation and yL  is total length of the sample. 
It shows that in many cases sampling intervals can be larg-
er than space and time steps used by solver to space dis-
cretization and in time integration, respectively. Especially 
it is useful in the case of Runge–Kutta (RK) solvers [41]. 
For example, if we investigate SWs propagation up to 
25 GHz, then optimal sampling frequency is samplΔt = 
= 2⋅10–11 s. However, such time steps can be too long in 
many cases and it may be better to use shorter ones. It is 
convenient to use maximal step equal to samplΔt  and mini-
mal step a few orders of magnitude shorter. Similarly is in 
the case of space discretization, but here, due to technical 
reasons, resampling is usually not convenient. Another 
important parameter in simulations is a number of periods 
in studied structure. This number of repetitions defines 
resolution of the dispersion relation in the wave vector 
domain (number of periods is the exact number of different 
k vectors inside 1st BZ). Summarizing, to obtain fine reso-
lution of dispersion relation, it is necessary to simulate the 
system of many periods through long time. 

The evolution of the magnetization in the whole system, 
obtained using MMS, can be written in the form of 4 di-
mensional matrix ( , , , )t x y zM . To reduce size of the prob-
lem, it is convenient to choose one component of the mag-
netization which is perpendicular to static magnetization — 

( , , , )cM t x y z  where c denotes chosen component of the 
magnetization, here we use y  component. To obtain dis-
persion relation for waves propagating along y  axis for 
certain values of ix  and iz  we calculate two-dimensional 
Fourier transform from y  and  t  coordinates to yk  and .f  
This is effectively realized with Fast Fourier Transform (FFT) 
algorithm , ( ) { , , , } ( , , , ).c c

t y yM t x y z M f x k z=   Then, if 
we plot module of the obtained result ( , , , )c

i y iM f x k z  we 
will get the dispersion relation. If we aren’t interested in 
modes visualization we can simply accelerate that process 
by choosing values ix  and iz  before calculating FFT: 

,( , , , ) ( , ,{ }., )c c
i y i t y i iM f x k z M t x y z=   Results obtained 

in such way depend strongly on the particular form of 
the excitation. Note that, the different lines in dispersion 
relation have unlike intensities. Due to that, the disper-
sion relation could be unclear. Very helpful in extracting 
results from simulations are methods used for signal and 
image processing. More specific information about tech-
nical details can be found in Ref. 40. 

Modes related with dispersion relation can be quite eas-
ily visualized. Firstly, the values of frequency 0( )f  and 
wave number ( ),yk  corresponding to particular mode, 
should be selected. In next step we can reduce the size of 
obtained matrix ( , , , )c

yM f x k z  by leaving only elements 
corresponding to the selected frequency, 0( , , , )c

yM f x k z =  

0
( , , ).c

yfM x k z=   Subsequently, the matrix is filtered, i.e. all 
values corresponding to different wave numbers than 0 ,k nG+  
where n∈  and G  is a lattice vector, are replaced by zeros: 

0 0 0
( , , ) ( , , ).c c

k nG y yf fM x k z M x k z+ ′δ =   In the further step one-
dimensional inverse FFT is performed, separately for every 
value of x  and :z  

0 0 0
1

, ( , , ) { ( , , )}.
y

c
f k yk fM x y z M x k z− ′=   

Then, the real (imaginary) part of that matrix, 

0 0,Re [ ( , , )]f kM x y z  (
0 0,Im [ ( , , )]f kM x y z ), can be plotted as 

profile of the particular mode corresponding to the points 
0 0( , )f k  in ( )f k  space belonging to the dispersion branch. 

Algorithm of calculating the dispersion relation and visual-
ization of the particular modes is presented in Fig. 8. 

To obtain dispersion relation already calculated with 
FEM (Fig. 6) we used 128 alternately ordered wires 
(Fig. 5(a)), which gives the total length 12.8yL =  µm. We 
discretized this structure to 2600×1×4 cuboidal cells of 
sizes 5×20×7.5 nm. Due to symmetry along wires axis, it is 
possible to reduce number of cells along the z-axis during 
MMS by applying periodic boundary conditions. 

We’ve intended to study SWs propagation for frequen-
cies up to 25 GHz, therefore time of sampling intervals 

Fig. 8. (Color online) The post-processing algorithm of the MMS 
results in order to obtain dispersion relation of SWs in MC and to 
visualize amplitude of the SWs excitations. 
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was set on samplΔt = 2⋅10–11 s. For SWs excitation we used 
small, orthogonal to static magnetic field, external dynamic 
magnetic field defined in Eq. (14), where cutoff frequency 
was cut 30f =  GHz and cutoff wave vector 8

cut 10k =  m–1. 
The parameters which shift value of the maximal excita-
tion field in space and time was taken as 0 /2 yy L= and 
0t =  1⋅10–9 s. To avoid nonlinear effects, the maximal am-

plitude was set as 0 0.05b =  T. During dynamic simula-
tions LL equation was solved using RK45 (Dormand–
Prince) method [35] with maximal time step samplΔt  and 
minimal time step equal to 10–18 s. Total simulation time 
was set as 100 ns. The dispersion relation obtained in 
MMS is shown in Fig. 6 with the blue color map. Good 
agreement with results of FEM in frequency domain is 
obtained. However, the intensity of the different bands is 
different. It is related to the shape of the excitation field 
and its relation to the SWs amplitude [42,43]. The intensity 
of the 1st band is high, as this band is connected to the 
fundamental oscillations (Fig. 9) according also with FEM 
results (Fig. 7(a)). 

The 2nd mode is invisible in the dispersion relation at 
0yk =  obtained with MMS. It is because, for the symmet-

ric excitation field, used in simulations (Eq. (14)), the 
asymmetric SWs in Py (see Fig. 7(a)) are not excited. 
However, with increasing wave number, the intensity of 
the second band in the dispersion relation increases. This 
is, because at the BZ boundary the oscillations are in oppo-
site phase in neighboring unit cells. 

Nonreciprocity in magnonic crystals 

In the previous two sections dispersion relation and 
amplitude of SW in 1D MC in the DE geometry were in-
vestigated. SWs propagating in thin homogeneous films, 
perpendicular to the external in-plane magnetic field (DE 
geometry), possess nonreciprocal properties discussed al-
ready in the previous section. This means that the SWs 
propagating in opposite directions (in yk  or – yk  direction) 
have amplitude of the dynamic magnetic fields distributed 
non-symmetrically across the film thickness and they have 
maximum near one of the surfaces of the film (maxima 
appear at opposite surfaces for )yk±  [18]. The localization 

of the amplitude has already been observed in the results 
of FEM calculations for 1D MCs (Fig. 7(b)). However, the 
frequencies of the oppositely propagating waves were 
the same, ( ) ( )y yf k f k= −  (see Fig. 9). 

Placing a metal overlayer atop of the film breaks spatial 
symmetry and also results in breaking symmetry of the 
dispersion relation with the respect to the change of the 
wavenumber sign [44]. The dispersion relation reveals 
significant change of frequency only for the spin waves 
propagating in one direction, resulting in nonreciprocal 
dispersion in the film ( ) ( ).y yf k f k≠ −  In other words, 
placing the metal overlayer causes spin waves with equal 
frequency propagating in converse direction to possess 
different wave vector magnitudes. 

The effect of non-reciprocity has impact on the disper-
sion of MCs and the magnonic band gaps. Placing a metal 
plate or perfect electric conductor (PEC) on the top of mag-
nonic crystal might leads to destruction of the Bragg condi-
tion, since the wavelengths of incident and reflected spin 
waves at fixed frequency are different [45]. However, the 
magnonic band gap can still form in this structure, as has 
been recently demonstrated theoretically and experimental-
ly [46,47]. The spin waves propagating in opposite direc-
tions and possessing different values of wave vector mag-
nitudes can interact and fulfill the general Bragg condition 
required for band gap opening. 

FEM in the frequency domain has been implemented 
here to solve the LL and Maxwell equations in the magne-
tostatic approximation (i.e., neglecting dynamical coupling 
of the magnetostatic field with the electric field), to find 
the dynamical components of the magnetization vector 

( )m r  and to obtain the dispersion relation in 1D MC 
shown in Fig. 10(a). The unit cell used in the calculation is 

Fig. 9. (Color online) Distribution of the SW amplitude in 
the unit cell of the 1D MC calculated with MMS. The amplitude 
for the 1st, and 3rd mode in the BZ center is shown. Good match 
with amplitudes obtained with FEM is shown [Fig. 7(a)]. 

Fig. 10. (Color online) (a) A structure of 1D MC with a layer of 
a perfect electric conductor (PEC) on the top surface. The MC is 
composed of alternating, infinitely long stripes of Py and Co. 
The external static magnetic field H0 is applied in the plane of 
the film, parallel to stripes. The SW propagate along y-axis. 
(b) The rectangular unit cell used in numerical calculations with 
periodic boundary conditions (PBC) assumed along the y axis. 
The effect of a PEC being in the direct contact with the MC is 
implemented via boundary condition at the top surface. The bot-
tom border of the unit cell is far from the MC. 
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shown in Fig. 10(b). The equations are defined by 
Eqs. (11) and (12). Because of PEC on the top surface we 
need to modify electromagnetic boundary condition at this 
surface. Here, the continuity of the normal component of 
the magnetic induction Bx is required. We set the Bx to 
zero on the top boundary of MC with PEC: 

 0.
 x xH m

x
∂ϕ

= − + =
∂

  

The dispersion calculated for MC with Co and Py 
stripes of width 250 nm, with dielectric surroundings is 
shown in Fig. 11(a) with dashed lines. Material parameters 
were taken from Refs. 48, 49 and the external magnetic 
field of 0.2 T was assumed. The dispersion is in good agree-
ment with the experimental data from Ref. 23. The edges 
of the magnonic band gaps are indicated by points 1 and 2 
at the BZ border in Fig. 11(a). This SW dispersion is re-
ciprocal. 

The nonreciprocity is introduced with the asymmetric 
boundary conditions between the top and the bottom sur-
face of the MC. The magnonic band structure calculated 
for the same MC but with PEC at the top surface is shown 
by solid lines in Fig. 11(a). The dispersion has now nonre-
ciprocal character and the edges of the band gap are shifted 
towards the center of BZ (points 3 and 4 in Fig. 11(a)). The 
band structure possess an indirect band gap. The Fig. 11(b) 
shows the distribution of )e[ ]R (ym r  along the y-axis. The 
profiles of the dynamic magnetization components are lat-
erally quantized for higher bands, showing that effective 
wave vector parameter increases with the number of mode. 

Magnonic band gap in three-dimensional magnonic 
crystals 

In the last part we present the theory of 3D MCs. Con-
cerning bi-component 3D MCs the big challenge is their 

fabrication, especially if the lattice constant is in the na-
nometer range. Generally, there are two approaches to the 
fabrication of such structures: top-down and bottom-up 
[50]. In top-down methods holes are drilled in the bulk 
material (matrix) and filled with another magnetic material 
(inclusions). Such methods are common rather in 2D case. 
The idea of bottom-up techniques is to prepare the lattice 
of inclusions and then to fill empty spaces with the matrix. 
This idea gives possibility to make 3D MCs using self-
assembling magnetic nanoparticles (NPs) as a template. 
One of the most extensively studied example of magnetic 
NPs is magnetoferritin (mFT), a biomimetic NP based on a 
ferritin, a protein used in living organisms to store an iron 
in a nontoxic form [51,52]. 

The usage of cage-like proteins to grow magnetic NPs 
has a number of advantages [53] (extremely high level of 
homogeneity, variety of the sizes and properties of protein 
cages, diversity in physical or chemical functionality of pro-
tein shells) which allows to control the self-assembly pro-
cess without modifying the NPs obtained inside the protein 
cages. Especially, mFT NPs can be filled with numerous 
magnetic materials resulting in different magnetic proper-
ties of the NPs [54,55]. The protein crystallization tech-
nique used to crystallize mFT NPs, allows to produce high-
ly ordered 3D structures up to about 0.4 mm in size [56]. 
Obtained mFT crystals have high quality fcc structure and 
the lattice constant about 18.5 nm. An interesting effect is 
a reduction of the lattice constant to ca. 14 nm as a result 
of dehydration [57]. Moreover, it was shown theoretically 
that dried mFT crystals have the crystallographic structure 
and the lattice constant almost optimized for the occur-
rence of a complete magnonic band gap [58]. 

The object of this part of our study is a bi-component 
MC based on mFT crystal, i.e., a crystal consisting of mFT 
NPs (inclusions) arranged periodically in a ferromagnetic 
host material (B). The geometry of such MC is limited to 
fcc structure, in which mFT NPs crystallize, and the diame-
ter of the inclusions is fixed at 8 nm (the diameter of the 
magnetic core of fully loaded mFT). The minimal lattice 
constant of such MC is 11.314 nm (mFT cores are touching 
each other). Constituent materials are characterized by 
magnetic parameters: the saturation magnetization SM  and 
the exchange length ex .l  The contrast for each parameter is 
defined as the ratio of its value in mFT to its value in the 
matrix. An external magnetic field strong enough 

0 0( 0.1 Hµ =  T) to saturate the system is applied along one 
of the main crystal axes. The studied system is shown 
schematically in Fig. 12(c). 

To determine the spin-wave spectra of 3D MCs we use 
PWM already introduced in Sec. 3 for 2D MCs. The mag-
netostatic field can be expanded in Fourier series using 
Eq. (2), as it was done for 2D MCs: 

 

Fig. 11. (Color online) (a) The dispersion relation of the 1D MC 
composed of alternating Co and Py stripes with one side metal-
ized (solid lines) and with both dielectric surroundings (dashed 
lines) for the bias field of µ0H0 = 0.2 T. (b) The absolute value 
of the dynamic magnetization |Re [my(y)]| of the first three 
modes: I, II and III of the Co/Py metalized structure for the 
wavenumbers marked in (a) with circles. 
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where position vector, the wave vector and reciprocal lat-
tice vectors have now three components ( , , ),x y z=r  

( , , )x y zk k k=k  and ( , , )x y zG G G=G  and the whole sys-
tem is periodic in all three dimensions. 

In a consequence also elements of the matrix (10) in 
the eigenvalue problem (9) are modified: 
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By diagonalization of the matrix (10) with sub-matrices 
defined in Eqs. (15)–(18), we obtained the reduced fre-
quencies Ω (eigenvalues) and the eigenvectors — coeffi-
cients of the Bloch expansion of the dynamic part of the 
magnetization (5), as in 2D MC. 

In Fig. 12 we present two spin-wave spectra plotted 
along the line connecting high-symmetry points in the first 
BZ. The lattice constant is assumed to be 18.5 nm (this 
value correspond to mFT crystal as prepared) and the mag-
netic parameters of the mFT NPs are: SM = 0.346⋅106 A/m 
and A = 10–11 J/m [59]. Two matrix materials are used: Co 
in (a) or Ni in (b). For Co matrix a wide (ca. 100 GHz), 

Fig. 12. Spin-wave spectra (up to 500 GHz) of mFT MC with (a) cobalt and (b) nickel matrix for lattice constant 18.5 nm (mFT crystal 
as prepared). The spectra are plotted along the high-symmetry path in the 1st Brillouin zone shown in (d). Shaded area represents: in (a) 
the complete magnonic band gap and in (b) the overlapping of the first and second band. (c) Schematic depiction of the mFT MC struc-
ture with coordinating system used. 
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complete magnonic band gap appears. This gap is located 
between the first and the second band. In the case of Ni 
matrix the band gap failed to open which is the conse-
quence of too weak contrast of saturation magnetization 

SM  [60]. The existence of a critical SM  contrast below 
which the complete gap does not open stems from the fact 
that in a spectrum for 3D structure a complete bandgap is 
indirect gap. The bottom and the top of this gap is related 
to different propagation directions (in contrast to the direc-
tional gap, i.e., the gap for particular direction of the prop-
agation). Roughly speaking, the width of the directional 
gap depends on the contrast of magnetic parameters, and 
its central frequency is determined by the value of the 
wave vector at the boundary of the first BZ. If directional 
gaps for different directions of propagation are too narrow, 
then the overlapping of neighboring bands appears. This 
very effect underlies the lack of complete magnonic gap 
for the Ni matrix (Fig. 12(b)). 

As we have already mentioned, the mFT NPs can be 
loaded with different magnetic materials which means that 
the contrast of SM  can be modified in quite broad range. In 
Fig. 13(a) we show the evolution of the complete mag-
nonic gap vs. the total magnetic moment of mFT NPs in 
MCs, which are based on four matrix materials: Fe, Co, Py 
and Ni. The lattice constant is fixed to 14 nm (dried mFT 
crystal). Presented dependences range from the magnetic 
moment twice the typical value of mFT 4(10  )Bµ  [57] 
which is gradually reduced to half of this value. The gap 
widens quickly with increasing SM  contrast (decreasing 
magnetic moment of the mFT NPs), consequently the 
complete magnonic gap opens even for Ni matrix at 
9.9⋅103 (a value only 1% less than in typical mFT NPs). 

Another way to tailor the magnonic gap is adjusting to 
the MC lattice constant. As we already mentioned, the 
mFT crystal reduces its lattice constant from 18.5 to 14 nm 
while drying. Additionally, functionalization of the exter-

nal surface of protein cage is also promising feature in 
terms of controlling the lattice constant of the MC. We 
plotted the evolution of edges of the complete magnonic 
gap vs. lattice constant for different matrix materials (Co, 
Fe, and Py) to explore the ranges in which the complete 
magnonic gap exists (see Fig. 13(b)). The magnetic mo-
ment of inclusions is fixed to 104 µB. In this case there is 
no gap for Ni matrix for any value of the lattice constant. 
For all cases we studied, the complete magnonic gap 
changes a lot with the lattice constant and its maximal 
width is observed at approximately 13 nm (the precise val-
ue depends on the matrix material). 

The existence of this maximum is related to the concur-
rence of the exchange and dipolar interactions. Coexist-
ence of long- and short-range interactions leads to very 
interesting phenomena in variety of systems [61–64]. In 
the MCs concerned in this study it strongly influences the 
spin wave profiles of two lowest modes (Fig. 14). For 
small lattice constant the modes of lowest frequency have a 
bulk character due to the strong exchange interactions be-
tween excitations in neighboring areas of the MC. As the 
lattice constant grows, the significance of exchange inter-
actions fades while dipolar interactions gain in importance. 
As a result for the larger lattice constant, stronger spin 
wave profiles are concentrated in mFT NPs (first mode) or 

Fig. 13. (Color online) The edges of the complete magnonic gap vs. (a) magnetic moment of inclusions and (b) lattice constant of MC 
for a Fe, Co, Py and Ni matrix. In (a) the lattice constant of MC is fixed at 14 nm (dried mFT crystal). In (b) magnetic moment of inclu-
sions is fixed at the typical value for mFT NPs (104 µB) and there is no gap for Ni matrix in this case. 

Fig. 14. (Color online) Profiles of dynamic magnetization for 
the two lowest spin-wave modes in an mFT/Co MC in a plane 
perpendicular to the external field and passing through the centers 
of mFT NPs (the contours of which are represented by circles). 
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in the matrix (second mode). For in-between region, where 
both types of interactions have comparable weightiness, 
maximum of the gap width appears. 

The profiles of the spin waves have great influence on 
the effective damping as well. Using PWM based on LL 
equation with damping included [65], we found the con-
centration of the mode in one of the constituent material 
changes effective damping towards its value in this ma-
terial [65]. This issue can lead to strong anisotropy of the ef-
fective damping. As an example in Fig. 15 we show results 
for the lowest modes obtained in MC containing spherical 
scattering centers (material B, MS,B = 0.194⋅106 A/m, 
AB = 3.996⋅10–12 J/m — these values are close to yttrium 
iron garnet) disposed in the matrix (material A, MS,A = 
=1.752⋅106 A/m, AA = 2.1⋅10–11 J/m — the values close 
to Fe). The lattice is assumed to be simple cubic with the 
lattice constant a = 10 nm and the sphere radius equal 
to 3.628 nm. The Gilbert damping parameter was chosen 
as αA = 0.0019 and αB = 0.064. The eigenmodes being 
solutions of LL are characterized by complex eigenvalues 

i′ ′′Ω =Ω+ Ω . In Fig. 15(a) and (b) we plotted the real and 
imaginary part of Ω, respectively. The imaginary part  ′Ω  is 
a measure of the life time of the particular SW excitation. 
However, the value ′′Ω  has to be referred to ′Ω  for direct 
comparison of the damping of different modes. In 
Fig. 15(c) we show so called “figure of merit” (FOM) 
which is the real part of the frequency divided by its imag-
inary part. As we can see the damping of the lowest mode 
is much higher (lower FOM) than for the second mode. To 
explain this feature we plotted spin-wave profiles (the dis-
tribution of the dynamical part of magnetization) for two 
lowest bands (see Fig. 15(d)). It is clearly seen that the 
lowest mode is strongly concentrated in scattering centers 
(with higher damping) while the second one — in the ma-
trix (with lower damping). Therefore, the effective damp-
ing for these two modes is much different. For the same 
reason the effective damping depends on the propagation 
direction as well. For example: comparing the profiles of 

the lowest mode for two different wave vectors, the con-
centration of the dynamical magnetization in the spheres is 
a bit stronger for direction R than at point Γ. This results in 
the difference of effective damping: 0.059 for R and 0.045 
for Γ. 

Conclusions 

We have demonstrated the application of different nu-
merical methods: PWM, FEM and MMS for calculations 
of the magnonic band structure in 1D, 2D and 3D MCs. 
The PWM is an useful tool for calculation of SW proper-
ties in periodic structures, independent on its dimensionali-
ty, shape of the elements and crystallographic lattice. 
However, PWM is limited to fully saturated materials and 
it works only in linear approximation. In the case of PWM 
applied to planar MCs, the considered MCs have to be ho-
mogeneous across the thickness and relatively thin. In the 
proposed FEM the last assumption is avoided. We showed 
usefulness of this method in the study of inhomogeneous 
excitations across the thickness of the homogeneous film 
of MC. We showed that FEM can be easily extended to 
include the boundary effect induced by conductive materi-
als surrounding MC film. This method is suitable for in-
vestigation of the nonreciprocal properties in SW dynamics 
in 1D and 2D MCs. MMS are the most general tool, which 
avoid assumptions used in PWM and FEM. However, this 
method requires the complex post-processing to extract 
information obtained directly in PWM or FEM. The other 
drawback of MMS is a long time of the calculations, how-
ever, this is cut down by implantation of the GPU units for 
calculations. We have demonstrated usefulness of MMS to 
study magnonic band structure in planar 1D MC. Its exten-
sion to the planar 2D MC can be easily done. 

We have demonstrated, that the surface character of the 
Damon–Eshbach wave is also preserved in magnonic crys-
tals. Surface localization increases with the band number, 
however the localization exists only inside the Brillouin 
zone, this is excluding Brillouin zone center and border. 

Fig. 15. (Color online) The real and imaginary parts of the frequency in the first BZ for sc MC in (a) and (b), respectively. (c) The figure 
of merit (FOM) for the same structure. (d) The distribution of the amplitude of the dynamical components of the magnetization across 
the planes perpendicular to the external field. Planes (001) and (002) are between and across the spheres, respectively. The profiles from 
the first and the second band in Γ and R point of the first BZ are shown. (Figures taken from Ref. 65). 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2015, v. 41, No. 10 973 



J. Rychły, P. Gruszecki, M. Mruczkiewicz, J.W. Kłos, S. Mamica, and M. Krawczyk 

The surface property of the spin wave excitation is further 
exploited by covering plate of the magnonic crystal with a 
conductor. Due to that the nonreciprocal dispersion rela-
tion is introduced. 

The band structure in 2D magnonic crystals is very 
complex. It is caused not only by structurization, but also 
by the demagnetizing field. This field introduces additional 
spatial inhomogeneity for spin waves and modifies spin 
wave dispersion. It also makes the band structure strongly 
dependent on shape of inclusion and type of lattice for 
magnonic crystal. Pronounced effect is the localization of 
low frequency spin waves in the areas of the lowered in-
ternal magnetic field. However, the inhomogeneity of the 
internal magnetic field becomes unimportant for magnonic 
crystals with small lattice constant where demagnetizing 
effect can be neglected. In this limit, the band structure is 
only slightly dependent on the shape of inclusions and type 
of the lattice. For 3D magnonic crystals, characterized by 
small lattice constant, for the structures with characteristic 
sizes comparable to diameter of magnetoferritin crystals, 
the wide band gap was found. Finally, we have pointed out 
that the spatial distribution of different materials could be 
explored for tailoring effective damping of spin waves. 
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