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The influence of the misfit strain on the lateral shift (Goos–Hänchen effect) experienced by a near-infrared
electromagnetic wave upon reflection from the surface of a bilayer consisting of a magnetic, gyrotropic (i.e., whose
permittivity tensor elements depend upon magnetization) yttrium–iron garnet film deposited on a nonmagnetic
gadolinium–gallium garnet substrate is investigated theoretically. In the geometry of the transverse magneto-
optical Kerr effect, it is shown that the mechanical strain near the geometrical film/substrate interface can induce
a significant lateral shift of the beam for incidence angles close to normal incidence, where no shift appears in the
absence of strain. Our calculations demonstrate positive as well as negative values of the lateral shift, depending on
the incident light polarization and on the film thickness. In contrast with that of the misfit strain, the influence of
the magnetization of the gyrotropic film on the lateral shift is more noticeable for a TM- than for a TE-polarized
wave. © 2016 Optical Society of America
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1. INTRODUCTION

The lateral shift of a reflected beam relative to its geometrical
optics position was reported for the first time in 1947 by Goos
and Hänchen in the case of the total internal reflection at the
interface between two dielectric media [1,2]. Since then, nu-
merous theoretical and experimental works have been devoted
to this phenomenon, expanding its scope to the reflection from
virtually any type of surface and from any type of structure,
including photonic crystals. Moreover, it can be extended to
any kind of wave process and has been described for acoustic
waves (Shoch effect) [3], spin waves [4–6], neutrons [7], and
electrons [8]. Beyond their fundamental interest, Goos–
Hänchen-like lateral shifts upon reflection or transmission of
a light beam, as well as the related Imbert–Fedorov effect
(i.e., a beam shift in the direction perpendicular to the plane
of incidence), have become relevant in technological domains,
as illustrated by recent review papers [9,10]. They have been
shown to affect the propagation modes in optical waveguides
or microcavities [11] designed for photonic applications and
have also been studied in many types of structures, including

electro-optic [12–15] or magneto-optic materials [16–21],
photonic crystals [22–24], superconducting multilayers
[25,26], plasmonic structures [27–29], graphene [30–32], at
the interface between an ordinary dielectric and a topological
insulator [33], as well as in metamaterials [34–38]. Recently,
the Goos–Hänchen effect has been studied for partially coher-
ent light fields [39] and in a standing-wave-coupled electro-
magnetically induced transparency medium [40,41]. The
Goos–Hänchen effect has also been used successfully to design
an optical waveguide switch [42], and, in recent publications,
applications for biosensing (e.g., the measurement of E. coli
O157: H7 concentration [43]) or for the detection of chemical
vapors [44] were reported. In magneto-optical materials, the
Goos–Hänchen shift can typically reach values up to several
tens of light wavelengths [17]. Giant Goos–Hänchen shifts
(equal to about 100 light wavelengths) were observed in reflec-
tion from multilayered photonic crystals [24]. Thus, the Goos–
Hänchen shift ought to be taken into account for the design of
integrated magneto-optical devices.

Obviously, the amplitude of the Goos–Hänchen shift
depends upon such parameters as the angle of incidence,
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wavelength and state of polarization of the incident electromag-
netic wave, but it also strongly depends on the nature and
anisotropy of the media forming the interface, and, more gen-
erally, on that of all the media constituting the structure on
which reflection takes place. The anisotropy of the materials
can be inherent to their crystalline symmetries but can also
be externally controlled, such as in the case of magnetic media
whose magnetization can be reversed. Moreover, the quality of
the interfaces encountered by an electromagnetic wave can also
be of importance. Indeed, it is well known that elastic strain
takes place in the vicinity of interfaces in layered structures
due to the crystalline lattice misfit between the neighboring
materials [45,46]. As a consequence, atomic alignment on each
side of the geometric interfaces is altered, and the thickness of
the resulting deformed layers can reach values up to a few hun-
dred ångströms. Such crystalline deformations near interfaces
are known to affect the optical properties, notably the reflec-
tivity, of the multilayers via the photoelastic interaction [47]. A
strong influence of epitaxial strain on the magneto-optical re-
sponse of Co films was recently reported [48]. In our papers
[49–51], we investigated the influence of misfit strain on op-
tical second-harmonic generation in terms of the nonlinear
photoelastic tensor and the modulation of the quadratic non-
linear optical susceptibility of the medium. Similarly, we stud-
ied the effect of interfacial strain on the transmittivity of a
dielectric photonic crystal [52].

The reflection of light from a magnetic material in which the
magnetization is perpendicular to the plane of incidence reflec-
tion plane (transverse magneto-optic Kerr effect) is a powerful
tool for the study of magnetic materials, surfaces, and interfaces
[53]. The Goos–Hänchen effect from a ferrite–ferrite interface
in that configuration was for instance theoretically analyzed in
[16], but misfit strain was not taken into account.

In this paper, we propose a study of the lateral shift expe-
rienced by an electromagnetic wave upon reflection, in the
transverse magneto-optical Kerr effect geometry, from the
upper surface of a strained dielectric bilayer consisting of a mag-
netic film of yttrium–iron garnet (YIG) epitaxially grown on a
nonmagnetic substrate of gadolinium–gallium garnet (GGG)
and surrounded by vacuum. The YIG/GGG bilayer has been
a widely studied system for several decades. Garnets such as
GGG and YIG exhibit a very good transparency in the
near-infrared and infrared regimes of the electromagnetic
spectrum. Moreover, these two crystals can easily be grown
on top of each other, as their lattice constants only slightly
differ—their difference leading, however, to misfit strain.
Therefore, the YIG/GGG bilayer has proved to be of particular
interest for the design of magneto-optical structures and devices
(magnetic photonic crystals [54,55], Faraday rotators,
magneto-optical switches, etc. [53]) in the near-infrared and
infrared domains.

We limit ourselves to the Goos–Hänchen shift, but a sim-
ilarly detailed study of the Imbert–Fedorov spatial and angular
shifts in the same system and with the same approach poses no
particular difficulty. Section 2 is devoted to the description of
the geometry of the system and the photoelastic contribution of
mechanical strain on the permittivity tensors of the materials on
both sides of their geometrical interface. Section 3 describes the

resolution of wave propagation in the inhomogeneous bilayer
using the Green’s functions techniques and expresses the overall
complex reflectivity of the system, whose phase leads to the
determination of the lateral shift of the beam. In Section 4,
numerical simulations are performed for a near-infrared electro-
magnetic beam impinging on a bilayer consisting of a magnetic,
gyrotropic yttrium–iron garnet film deposited on a nonmag-
netic gadolinium–gallium garnet substrate, and the influence
of the mechanical strain near the geometrical film/substrate in-
terface is studied and discussed, as well as that of the magneti-
zation in the magnetic film. In conclusion, we summarize our
results, and an appendix details the derivation of the Green’s
functions.

2. DESCRIPTION OF THE SYSTEM

A. Geometry

We consider a bilayer in vacuum consisting of a thin magnetic
film (henceforth identified by index α � 1) epitaxially grown
on a nonmagnetic substrate (α � 2). The materials on either
side of the interface have similar cubic crystal lattices, with lat-
tice constants, respectively, denoted a1 and a2, yet the differ-
ence of these lattice constants leads to misfit strain and
subsequent dislocations in the vicinity of their geometric inter-
face. Figure 1 shows the geometry of the problem. The inter-
face between the materials is parallel to the (xy) plane of a
Cartesian system of coordinates. A plane wave of angular fre-
quency ω impinges the surface of the magnetic film under
oblique incidence angle θ. The plane of incidence is (xz),
and the incident and reflected waves can be decomposed into
TE and TM components of electric field strengths E �r;i�

TE;TM,
where superscripts (i) and (r) correspond to the incident and
reflected components, respectively. The magnetization vector
in the magnetic film is directed along the y axis, which corre-
sponds to the transverse magneto-optical configuration. The
thicknesses of the film and the substrate are denoted D1 and

Fig. 1. Schematic of the Goos–Hänchen shift in the transverse mag-
neto-optical geometry in the system under study. A magnetic film
(thickness D1) is epitaxially grown on a nonmagnetic substrate (thick-
nessD2). The thicknesses of the pseudomorphous regions on each side
of their geometric interface are h�1�c and h�2�c . The magnetizationM �
f0;My; 0g in the film is perpendicular to the plane of incidence (xz).
The TE and TM components of the incident (i) and reflected (r)
optical electric fields are denoted E �r;i�

TE;TM. The spatial and angular
Goos–Hänchen shifts in the plane of incidence upon reflection are
ΔL and Θ, respectively.
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D2, respectively. Near the interface, a pseudomorphous region
is established, in which the mechanical strain is homogeneous.
The thicknesses of the pseudomorphous region on each side of
that interface (called critical thicknesses) are denoted h�1�c and
h�2�c , respectively (see dotted lines in Fig. 1), so that its total
thickness is h�1�c � h�2�c . If the thickness of the film is larger than
h�1�c , misfit dislocations (indicated by symbols “⊥” in Fig. 1)
appear above that region, where they tend to compensate for
misfit strain and minimize the total mechanical strain energy.

In the transverse magneto-optical configuration, the relative
dielectric permittivity tensor assumes the following form:

bε�1;0� �  ε1 0 −iε 0

0 ε1 0
iε 0 0 ε1

!
; (1)

whereas, in the nonmagnetic substrate, it simply can be
written as

ε�2;0�ij � ε2δij ; (2)

where δij is the Kronecker symbol.
It should be noted that, if quadratic (in magnetization) mag-

neto-optical contributions to the permittivity are neglected, the
diagonal elements of bε�1;0� do not depend on magnetization
amplitude My, while its off-diagonal elements are linear in
My and can be written as ε 0 � f 0

emy, where f 0
e is the gyroelec-

tric coefficient of the magnetic film and my � My∕M sat its re-
duced magnetization, M sat being its saturation magnetization
[56]. Furthermore, we neglect a potential magnetic gyrotropy,
i.e., a dependence of the permeability of the magnetic film
upon magnetization. In effect, in both materials, the permeabil-
ity will be taken as that of the vacuum.

When a monochromatic Gaussian wave packet impinges on
the uppermost surface of the thin film, its reflection undergoes
a non-negligible Goos–Hänchen lateral shift in the plane of
incidence (in our case, along the x axis) denoted ΔL in Fig. 1
as well as an angular shift Θ in the same plane. The lateral and
angular shifts can be obtained with the stationary-phase ap-
proach proposed by Artmann [57]. Assuming an incident
Gaussian beam of waist w0 whose transverse field distribution
along the x axis, we write:

E �i��x� � E0 exp

�
−

x2

2w2
0

�
; (3)

where the spatial profile E �r��x� of the reflected beam is the
inverse Fourier transform of the convolution product between
the Fourier transform Ẽ �i��K � of the incident field profile and
the complex reflection function R�kx� of the system, where kx
is the component of the wavevector along the x-axis, whose
distribution of values stems from the angular divergence of
the Gaussian beam:

E �r��x� � 1

2π

Z
∞

−∞
Ẽ �i��K �R�K � kc� exp�iK x�dK ;

Ẽ �i��K � �
Z

∞

−∞
E �i��x� exp�−iK x�dx; (4)

where kc is the central wave vector of the incident beam and
K � kx − kc . The complex reflection function R�kx� can be
written in the form:

R�kx� � exp�−i�ψ�kx� � i ln jR�kx�j��; (5)

where ψ�kx� � arg�R�kx�� is the phase difference between the
reflected and incoming light waves. An approximate expression
for E �r��x� can be obtained via a Taylor expansion of Φ�kx� �
ψ�kx� � i ln jR�kx�j in the vicinity of kc :

Φ�kx� ≈Φ�kc� � K
∂�ψ � i ln jRj�

∂kx
� K2

2

∂2�ψ � i ln jRj�
∂k2x

�…; (6)

where all derivatives are taken at kx � kc . Neglecting terms
higher than the second order in the Taylor series, it can be
shown that the lateral shift of the reflected wave packet, then,
simply writes:

ΔL � −
∂ψ
∂kx

−
∂ ln jRj
∂kx

∂2ψ
∂k2x

�
w2
0 �

∂2 ln jRj
∂k2x

�
−1

; (7)

while the angular shift can in first approximation be ex-
pressed as

Θ � −�θ20∕2�
∂�ln jRj�
∂kx

: (8)

Parameter θ0 � λ0∕�πw0� is the angular spread of the in-
cident beam of wavelength λ0 [58]. The Goos–Hänchen lateral
shift ΔL is taken to be positive toward the positive direction of
the x axis, and the angular shift Θ is counted positive for a
clockwise rotation with respect to the positive direction of
the y axis (in Fig. 1, both shifts are thus positive). It should
be noted that the stationary phase approach is valid for incident
beams with a sufficiently large beam waist, i.e., with a narrow
angular spectrum [57], in which case the reshaping of the beam
upon reflection can be neglected. In this approximation, the
reflected beam can then be considered Gaussian, with a sharp
spectral distribution around kc [59]. Although Artmann de-
rived the lateral shift for total internal reflection, it has been
shown that this approach remains valid for the partial reflection
of a well-collimated beam [60].

B. Influence of Strain on the Photoelastic Properties

The value of the misfit strain due to the mismatch between the
lattice constants a1 and a2 of the thin film and the substrate is
proportional in each material to the corresponding misfit
parameter f �1� (in the film) and f �2� (in the substrate), with

f �1� � a1 − a2
a2

; f �2� � a2 − a1
a1

: (9)

Consequently, a displacement of the atomic layers takes
place with respect to their positions in the absence of strain
and is represented by the displacement vector u�r�, where
r � �x; y; z�. This, in turn, induces a modification of the
relative permittivity tensor of the material on each side of the
geometric interface, which can be written asbε�α� � bε�α;0� � δbε�α�; α � �1; 2�; (10)

where bε�α;0� is the relative dielectric permittivity tensor of the
strain-free material and the elements of the strain-induced con-
tribution to its permittivity are, in a first-order approximation,
given by
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δε�α�ij � p�α�ijkl u
�α�
kl : (11)

For the sake of simplicity, the superscript α denoting the
material will sometimes be omitted in the following. In
Eq. (11), as well as in the remainder of this paper, summation
over repeated indices is assumed, p�α�ijkl are the elements of the
linear photoelastic tensor of the material, and u�α�kl are the el-
ements of its strain tensor. The latter are related to the displace-
ment vector u in each material along

ukl �
1

2

�
∂uk
∂rl

� ∂ul
∂rk

�
; �rk; rl � ∈ �x; y; z�: (12)

The materials constituting the film and the substrate are
supposed to belong to the same cubic symmetry group (Oh),
with the following nonzero photoelastic tensor elements:

pxxxx � pyyyy � pzzzz � p11;

pxxyy � pyyxx � pxxzz � pzzxx � pyyzz � pzzyy � p12;

pxyxy � pyxyx � pxyyx � pyxxy � pxzxz � pzxzx � pxzzx

� pzxxz � pyzyz � pzyzy � pyzzy � pzyyz � p44: (13)

For the same reasons of cubic symmetry, the biaxial stress
tensor describing the mechanical constraints parallel to the in-
terface in each material can be written as

bσ � δijσ0�z�: (14)

Assuming an elastic deformation of the crystals, the strain
tensor elements defined in Eq. (12) obey Hooke’s law and have
the following form:

uij �
1

E
��1� ν�σij − νTr�bσ�δij�; (15)

where E and ν are the Young modulus and Poisson’s ratio of the
material, respectively. From Eqs. (14) and (15), the strain ten-
sor elements thus read:

uxx � uyy ≡ u�z� � 1 − ν

E
σ0�z�;

uzz � −
2ν

E
σ0�z� � −

2ν

1 − ν
u�z�: (16)

Taking into account Eqs. (11), (13), and (16), it appears
that only photoelastic constants p11 and p12 actually play a role
in the contribution of strain to the permittivity of the materials.

In the pseudomorphous layer, strain is homogeneous, while
in the regions of the bilayer outside that layer, strain is decreas-
ing from the boundaries of the pseudomorphous region due to
the appearance of misfit dislocations in the film. It has been
reported earlier that strain tensor components can be estimated
to decrease exponentially as the distance from the dislocation
pileup plane increases [61], so that functions u�α��z� can be
expressed as

u�1��z� �
(
f �1� exp

h
z−D1�h�1�c

h�1�c

i
; 0 < z < D1 − h

�1�
c

f �1�; D1 − h
�1�
c < z < D1

u�2��z� �
(
f �1� exp

h
−z�D1�h�2�c

h�2�c

i
; D1 � h�2�c < z < D1 �D2

f �1�; D1 < z < D1 � h�2�c

:

(17)

Figure 2 shows the spatial variation of the strain in the
bilayer as described by Eq. (17).

In the first approximation, the crystal symmetry in the
strained regions can reasonably be assumed to remain un-
changed; in that case, only diagonal elements of the strain-
dependent contribution to the permittivity tensors of the film
and the substrate are nonzero. Their expressions in each of the
four regions of the bilayer defined in Eq. (17) are given by

δε�α�xx �z� � δε�α�yy �z� � u�α��z�
�
p�α�11 � p�α�12

�
1 −

2ν�α�

1 − ν�α�

��
;

δε�α�zz �z� � u�α��z�
�
2p�α�12 − p�α�11

2ν�α�

1 − ν�α�

�
: (18)

3. ANALYTICAL RESOLUTION OF THE WAVE
EQUATION

A. Green’s Functions Method

The aim of this section is to show the technique used for the
resolution of the wave equation in the inhomogeneous
structure resulting from strain-dependent perturbations of the
permittivity:

grad�div E� − ΔE − k20bε�0�E � k20δε̂�z�E ; (19)

where the expressions of the elements of the perturbation ten-
sor δbε�z� are given by Eq. (16). Note that this equation remains
valid in a homogeneous medium such as vacuum, in which
that tensor is simply zero. In inhomogeneous media, where its
elements depend upon z, solutions of Eq. (19) can be obtained
using the Green’s functions approach.

As a first stage, the solution of the homogeneous wave equa-
tion must be obtained using the specific form of the unstrained
relative permittivity tensor bε�α;0� of each medium, defined by
Eqs. (1) and (2).

Fig. 2. Spatial variation of the misfit strain in the bilayer (see
Table 1 for numerical values of the material properties). Shaded areas
show the pseudomorphous layers in the film and the substrate.
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Assuming solutions of the homogeneous wave equation to be
plane waves, spatial Fourier transform applied to inhomogeneous
Eq. (19) leads to the following linear system of differential
equations in each medium, with α � �1; 2�:

L̂�α��z�
0@E �α�

x �z�
E �α�
y �z�

E �α�
z �z�

1A � k20δε̂
�α��z�

0@E �α�
x �z�

E �α�
y �z�

E �α�
z �z�

1A: (20)

The propagation operator L̂�α��z� in either medium is

bL�α��∂z� �
0@ −k20εα − ∂2z 0 i�kx∂z − k20ε 0α�

0 k2x − k20εα − ∂2z 0
i�kx∂z � k20ε

0
α� 0 k2x − k20εα

1A;

(21)

where differential operators ∂z ≡ ∂
∂z and ∂2z ≡ ∂2

∂z2 are intro-
duced. Note that ε 02 � 0 in the nonmagnetic substrate.

The second stage of the procedure consists in introducing in
each region of the structure a Green’s function, i.e., a pertur-
bative solution of the inhomogeneous wave equation for a
point source term localized at position z 0. Such functions
G�α�

ij �z − z 0�, �i; j� ∈ �x; y; z� lead then to the expression of
the general solution of Eq. (19), with [62]

Ei�z� � E �0�
i �z�� k20

Z
D1

0

G�1�
ik �z − z 0�δε�1�kj �z 0�E �1;0�

j �z 0�dz 0

� k20

Z
D1�D2

D1

G�2�
ik �z − z 0�δε�2�kj �z 0�E �2;0�

j �z 0�dz 0: (22)

In this expression, fields E �α;0� are solutions of the homo-
geneous wave equation, and Green’s functions are themselves
solutions of the following equation:bL�α�ik �∂z�G�α�

kj �z − z 0� � δijδ�z − z 0�; (23)

where δ�z − z 0� is the Dirac function of variable z denoting the
presence of a point source at z � z 0.

The detailed procedure for solving Eq. (23) is presented in
Appendix A.

B. Reflection Coefficients for TE- and TM-polarized
Incoming Light

From that point on, expressions of the optical electric field in all
regions can be obtained using Eq. (22) and the Green’s func-
tions obtained in Appendix A.

For the specific purpose of this work, we then need first to
establish the reflection matrix of the vacuum/magnetic film
interface at z � 0. Denoting E �i� the field of the incoming
electromagnetic wave in the vacuum, it is useful to express
the components of its reflected counterpart as follows:

E �r�
i � E �0;r�

i � E �str;r�
i � R�0�

ik E �i�
k � R�str�

ik E �i�
k ; (24)

i.e., to separate the contribution of the unstrained bilayer from
the perturbation induced by strain.

The reflection matrix at the interface writes, then, simply:

Rik � R�0�
ik � R�str�

ik : (25)

The determination of the reflection matrix of the unstrained
structure is readily obtained, for instance, following the classical
techniques described by Yeh [63]. The strain-dependent
reflection matrix is then deduced from the sole perturbative

contribution to the reflected field in vacuum included in the
following expression:

E �str�
i �z� � k20

Z
D1

0

G�V �
ik �z − z 0�δε�1�kj �z 0�E �1;0�

j �z 0�dz 0

� k20

Z
D1�D2

D1

G�V �
ik �z − z 0�δε�2�kj �z 0�E �2;0�

j �z 0�dz 0;

(26)

estimated at z � 0. In Eq. (26), G�V �
ij in each integral is the

Green’s function in vacuum for z < 0 deduced in
Appendix A from Eq. (A12a), with amplitudes B�V �

ij obtained
using Eqs. (A9)–(A11) for a point source in the film and in the
substrate, respectively.

Due to the symmetry of the crystals and the additional
anisotropy imposed by the transverse magnetization in the
magnetic film, the TE and TM states of polarization are ei-
genmodes of the structure, whose nonzero components of their
electric and magnetic fields are �Ey; Hx; Hz� and �Ex; Ez ; Hy�,
respectively. Thus, for any incoming state of polarization, the
reflection matrix can be reduced to a (2 × 2) diagonal matrix
that connects the amplitudes of the TE and TM components
E �r�
TE;TM of the reflected field to those of the incident field

E �i�
TE;TM as �

E �r�
TE

E �r�
TM

�
�
�
RTE 0
0 RTM

��
E �i�
TE

E �i�
TM

�
; (27)

where the complex reflection coefficients RTE and RTM of the
TE and TM components of the electromagnetic radiation are
directly related to the elements of the reflection matrix
[Eq. (25)], with RTE � Ryy and RTM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
xx � R2

zz

p
.

4. NUMERICAL SIMULATIONS AND
DISCUSSION

In this section, we illustrate the theoretical calculations detailed
above in the case of a magnetic layer of YIG (Y3Fe5O12) grown
on a substrate of GGG (Gd3Ga5O12). Table 1 presents the
dimensions of the structures and the material parameters used
for these simulations.

Estimating the critical thickness h�α�c of the pseudomor-
phous layer in each material can be performed on the basis
of mechanical arguments in the crystalline lattice [46]. The
value of h�α�c in either material must satisfy

Table 1. Physical Data Used for Calculations

Wavelength (nm) λ0 � 1150
Lattice constants (Å) [64] a1 � 12.376 (YIG)

a2 � 12.40 (GGG)
YIG relative permittivity
tensor elements (at λ0) [56]

ε1 � 4.5796
ε 0 � f 0

emy � −2.47 × 10−4my
GGG relative permittivity
(at λ0) [56]

ε2 � 3.7636

Poisson’s ratios [65] ν�1� � 0.2857 (YIG)
ν�2� � 0.28 (GGG)

Nonzero linear photoelastic
tensor elements for YIG [65]

p11 � 0.025, p12 � 0.073,
p44 � 0.041

Nonzero linear photoelastic
tensor elements for GGG [64]

p11 � −0.086, p12 � −0.027,
p44 � 0.078
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h�α�c � b�α��1 − ν�α� cos2 β�
8π�1� ν�α��f �α� ln

2h�α�c

b�α�
; (28)

where b�α� is the modulus of the Burgers vector of the lattice
(for edge dislocations, it is equal to the lattice constant of the
unstrained crystal) and β � π∕2 for the edge dislocations that
appear in YIG and GGG crystals. Using material parameters
gathered in Table 1, Eq. (28) leads to the following values
for the critical thickness of the pseudomorphous layer in each
material, namely, h�1�c ≈ h�2�c � 0.1 μm.

For the calculations presented below for both TE- and
TM-polarized incident waves, film and substrate thicknesses
were taken as integer multiples of d 1 � 0.269 μm and
d 2 � 0.296 μm, respectively. These values correspond to the
film and the substrate being of equal half-wave optical thickness
at normal incidence, i.e., d 1

ffiffiffiffiffi
ε1

p � d 2
ffiffiffiffiffi
ε2

p � λ0∕2. This
choice was made in order to emphasize the effect of strain
on reflection, in conditions where the latter is near zero, i.e.,
in the vicinity of normal incidence, as well as around the
Brewster incidence angle for a TM-polarized wave. Note that
if the bilayer were to form the unit cell of a photonic crystal,
such a choice of layer thicknesses would correspond to the
center of the photonic bandgap at normal incidence.

Unless otherwise specified, all calculations are performed for
magnetization in the magnetic film saturated in the direction
parallel to the y axis, i.e., for my � �1.

Figure 3 shows the modulus of the reflection coefficient of
the bilayer as a function of the angle of incidence θ for a TE-
polarized (a) and a TM-polarized (b) incident wave as well the
modulus of the strain-dependent correction to that coefficient.

As expected, R�0�
TE is zero at normal incidence. It should be

noted that the reflection coefficient R�0�
TM, on the other hand,

is not strictly zero at normal incidence, due to the magnetic
anisotropy that introduces gyrotropic terms in the dielectric
permittivity tensor [Eq. (18)].

For the same reason, R�0�
TM only approaches zero at

θ ≈ 63.75°, which is not the Brewster angle as commonly de-
fined (i.e., leading to a disapperance of the reflected TM wave
[47]), but a pseudo-Brewster angle for which the reflection co-
efficient reaches a near-zero minimum. Due to the gyrotropy of
the magnetic film, the reflection coefficient is complex, and its
real and imaginary parts reach zero at slightly different inci-
dence angles. The correction to the reflection coefficient due
to strain R�str�

TE;TM is of the same order of magnitude for both
TE and TMmodes and about four orders of magnitude smaller
than the reflection coefficient of the strain-free structure. It was
checked that conservation of energy is satisfied for all angles of
incidence, including at grazing incidence where the strain-
dependent corrections reach zero and the strain-free reflection
coefficients are unity.

As previously mentioned, in the stationary-phase approach,
the calculation of the lateral shift of a Gaussian reflected beam
requires the knowledge of the phase shift between the incident
and reflected wave for all angles of incidence within the diver-
gent beam [see Eq. (1)]. This phase shift ψ is none other than
the argument of the reflection coefficient. Figure 4 shows its
angular dependence for a TE-polarized (a) and a TM-polarized
(b) incident wave, with and without film/substrate interfacial
strain.

Fig. 3. Modulus of the reflection coefficient of the bilayer as a func-
tion of the angle of incidence θ for a TE-polarized (a) and a TM-
polarized (b) incident wave. The solid blue line represents R�0�

TE;TM
without taking film/substrate interfacial strain into account. The
dashed red line shows the modulus of the correction R�str�

TE;TM to that
reflection coefficient due to strain.

Fig. 4. Phase shift ψ between the incoming and reflected waves as a
function of the angle of incidence θ for a TE-polarized (a) and a TM-
polarized (b) incident wave. The solid blue line represents the phase
shift without taking film/substrate interfacial strain into account. The
dashed red line shows its value when strain is accounted for.
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The impact of strain is only significant in the vicinity of the
normal incidence, where the phase shift exhibits a steep varia-
tion from −1.25π to −0.5π for a TE-polarized wave, and from
−1.25π to −1.5π for a TM-polarized wave, as one can see from
the insets in Fig. 4. It can, thus, be expected that the strain-
dependent contribution to the lateral shift of the reflected beam
will also assume significant values near normal incidence.

Indeed, as Fig. 5 shows, the strain-dependent correction to
that shift is only noticeable for small values of the incidence
angle. However, in that region, this contribution reaches large
values. The strain-induced lateral shift exceeds 100 wavelengths
of the incident light to the left with respect to the x axis (one
speaks of a negative shift) for a TE-polarized wave, whereas it
reaches about 18 wavelengths to the right (positive shift) for a

TM-polarized wave, as can be seen on the left insets in Fig. 5.
In the latter case, an even larger lateral shift (about 55 wave-
lengths to the left) occurs at the pseudo-Brewster angle. The
right inset in Fig. 5(b) shows that the angular position of
the extremal value of the lateral shift is slightly different when
strain is taken into account and when it is not—this corre-
sponds to a shift of the pseudo-Brewster angle of about 0.02°.

Because the lateral shift depends on the phase difference be-
tween the incoming and the overall reflected waves, its sign
(positive or negative) is governed by the phase-dependent in-
terference of the waves reflected from the interfaces separating
the different layers of the system [66]. For given values of the
layer thicknesses, it can thus switch sign when the angle of in-
cidence varies.

For both states of polarization, the lateral shift increases—
whether strain is taken into account or not—when the incom-
ing beam tends toward grazing incidence. This can be seen as
the analog of the behavior of the Goos–Hänchen effect, which
has been shown to be maximal near the angular condition of
total internal reflection at the interface separating a high-index
medium from a low-index one. In our case, the increase toward
unity of the reflectivity of the structure near grazing incidence
can be seen as the equivalent of that behavior.

The angular Goos–Hänchen shift Θ in the plane of inci-
dence is shown in Fig. 5(c) for an incident beam waist
w0 � 100 μm. In the absence of strain, Θ is almost identical
for TE and TM polarizations (black solid line) and is only sig-
nificant in the vicinity of normal incidence. The presence of
strain leads to an overall reduction of Θ, and the additional
anisotropy and inhomogeneity it introduces result in Θ alter-
nating between negative and positive values for a TE-polarized
beam (red dotted line), whereas it remains positive for a TM-
polarized wave (green dash–dotted line). The total beam dis-
placement observed at a distance l from the geometrical point
of incidence on the upper surface is ΔL� l tan Θ ≈ ΔL� lΘ
(see Fig. 1). The results presented in Fig. 5 show that the an-
gular contribution to this displacement only becomes compa-
rable with ΔL (at incidence angles where the latter is maximal)
for l > 10 cm. In the following, we will thus restrict our analy-
sis to the spatial Goos–Hänchen shift only.

The magnetic anisotropy in the magnetic film is also ex-
pected to have an impact on the optical response of the struc-
ture. The results in Figs. 3–5 were all obtained with the
magnetic film magnetized at saturation in the positive direction
of the y axis (my � �1). Figure 6 presents the angular depend-
ence of the variation of the reduced lateral shiftΔXM�

TM − ΔXM −

TM

upon complete reversal of the magnetization in the film, i.e.,
when magnetization is switched, so that my � −1 and off-
diagonal components of the permittivity tensor Eq. (1) change
sign, in the case of a TM-polarized incident wave. No variation
of the lateral shift takes place for a TE-polarized wave because
the dependence of the permeability tensor of the magnetic film
upon magnetization was neglected (in other words, we consid-
ered the film to be gyrotropic, but not bigyrotropic). This
choice is justified by the fact that the off-diagonal elements
of the permeability tensor of a bigyrotropic medium are at least
one order of magnitude smaller than those of its permittivity
tensor, hence are often neglected.

(a)

(b)

(c)

Fig. 5. Reduced Goos–Hänchen shift ΔX TE;TM � ΔLTE;TM∕λ0 as
a function of the angle of incidence θ for a TE-polarized (a) and a TM-
polarized (b) incident wave. Solid blue line represents the lateral shift
without taking film/substrate interfacial strain into account. Dashed
red line shows its value when strain is accounted for. (c) Angular
Goos–Hänchen shift Θ near normal incidence without strain (solid
black line for both TE- and TM-polarized light) and with strain
for TE- (red dotted line) and TM- (green dash–dotted line) waves
for a beam waist w0 � 100 μm.
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Not surprisingly, the variation of the shift is virtually zero at
angles of incidence for which the lateral shift was already neg-
ligible. Thus, this variation is only noticeable around the
pseudo-Brewster angle for the unstrained structure and around
that angle and near normal incidence when strain is taken into
account. In all cases, the variation of ΔL upon magnetization
reversal is about 2 orders of magnitude smaller than the shift
before reversal, i.e., magnetization in the magnetic field plays a
clearly lesser role in obtaining a lateral shift of the reflected
beam than strain.

Finally, the dependance of the Goos–Hänchen shift upon
the thicknesses of the film and of the substrate can be studied.
Figures 7(a) and 7(b) show the evolution of the reduced shifts
for TE and TM polarization, respectively, in the vicinity of their
extrema near normal incidence, for increasing values of film
thickness. Similarly, Figure 8 represents the same evolution
for increasing values of the substrate thickness. Note that, in
both cases, film and substrate thicknesses increase as integer
multiples of the nominal values given above (i.e., Di �
N i × d i, N i ∈ N, i ∈ f1; 2g, with d 1 � 0.269 μm and
d 2 � 0.296 μm), thus preserving the half-wave condition
for the optical thickness of the layers. Furthermore, in each
case, the substrate thickness is kept comparable with the film
thickness, in order to remain in agreement with the theoretical
description developed in this paper.

As can be observed from Fig. 7, the dependence of the lateral
shift upon film thickness D1 is not monotonous for either TE
or TM polarization. Indeed, for increasing values of D1 the lat-
eral shift of a TE-polarized wave changes sign, from negative
(ΔX TE � −130λ0 for D1 � 4 × d 1) to positive (ΔX TE �
320λ0 for D1 � 5 × d 1) values [see green and cyan profiles
in Fig. 7(a)]. Note that, for still larger values of the film thick-
ness, i.e., for D1 > 5 × d 1, the peak value of ΔX TE keeps in-
creasing due to the manifestation of the reflection coefficient
minimum near normal incidence. In comparison, for a TM-
polarized wave, ΔX TM first exhibits an increase with the film
thickness; then, its peak starts to decay for D1 � 5 × d 1, and
becomes negligible for D1 > 9 × d 1. The angular position of
the extremum of ΔX TM with respect to the film thickness
monotonously drifts toward larger incidence angles for a

TM-polarized wave. For a TE-polarized wave, on the other
hand, the anisotropy is such that the position of the extremum
of ΔX TE exhibits a nonmonotonous evolution with film thick-
ness [even the number of extrema varies, as can be seen in
Fig. 7(a), where ΔX TE exhibits two negative maxima for some
film thicknesses, e.g., for D1 � d 1 and D1 � 4 × d 1].

Contrary to the dependence of the amplitude and position
of the Goos–Hänchen shift peak near normal incidence upon
the film thickness, their dependence upon the substrate thick-
ness thickness D2 is monotonous for both states of incoming
polarization (Fig. 8). Indeed, for TE- and TM-polarized light,
the amplitude of the peak increases with D2, and its position
continuously shifts toward slightly larger angles of incidence.
For certain values of the substrate thickness (for D2 > 3 × d 2),
ΔX TE again exhibits two negative maxima [see Fig. 8(a)].

It must be emphasized that there would not be any peak of
the Goos–Hänchen shift near normal incidence if it were not
for strain in the epitaxially grown film. The complex depend-
ence of the amplitude and the position of the lateral shift ex-
tremum upon incidence angle and light polarization can be
assigned to the anisotropic influence of strain on the photoelas-
tic properties of both materials and, as a result, on the phase-
dependent interference pattern of the multiple waves reflected
from the various interfaces of the system. This influence is in no
way straightforward, as the Goos–Hänchen shift depends on
the variation of the phase-shift of the overall reflected wave
with respect to the x component of the wave vector—for an

Fig. 6. Difference between the reduced Goos–Hänchen shifts
ΔXM�

TM and ΔXM −

TM obtained for a TM-polarized incident wave with
saturation magnetization in the magnetic film parallel and antiparallel
to the y axis, respectively. The solid blue line represents the difference
without taking substrate/film interfacial strain into account. The
dashed red line shows its value when strain is accounted for.

Fig. 7. Reduced Goos–Hänchen shifts (a) ΔX TE and (b) ΔX TM as
functions of the angle of incidence θ for increasing values of the film
thickness in the vicinity of the normal incidence. Here, the nominal
film thickness is d 1 � 0.269 μm, and the substrate thickness is fixed
at D2 � 4 × 0.296 μm. Note the reversal of the vertical scale between
(a) and (b).
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incoming divergent beam, the distribution of kx values will
change upon reflection on each interface separating the opti-
cally and/or magnetically anisotropic layers of the system.

5. CONCLUSIONS

We theoretically studied the influence of the misfit strain
on the Goos–Hänchen (lateral) shift experienced by a near-
infrared electromagnetic wave upon reflection from the surface
of a dielectric bilayer consisting of a magnetic YIG film epitax-
ially grown on a nonmagnetic GGG substrate. We showed that
the mechanical strain near the geometrical film/substrate inter-
face can be significant, and that the lateral shift can reach values
from a few tens to hundreds of incident light wavelengths at
incidence angles close to the normal incidence as well as at
the pseudo-Brewster angle. We demonstrated that the largest
Goos–Hänchen shift, observed at small incidence angles, where
the half-wave condition for both layers is nearly satisfied, is en-
tirely induced by strain. It should be noted that if the half-wave
condition is satisfied for an oblique incidence angle away from
the normal incidence, the reflection coefficient turns to zero in
the absence of strain, which results in a large Goos-Hänchen
shift near this incidence angle. In this case, unlike what is
obtained at the pseudo-Brewster angle, the impact of strain is
large, and strain-induced contributions to the reflection coef-
ficient and its phase result in a broadening of the peak of the
Goos–Hänchen shift. Our calculations also demonstrated that
the lateral shift can be positive as well as negative, depending on

the polarization of the incident light and on the thickness of the
magnetic film. The influence of the magnetization of the YIG
film (in the transverse magneto-optical configuration) on the
Goos–Hänchen effect was also considered. For a TM-polarized
incident wave, the variation of the lateral shift upon magneti-
zation reversal was found to be only noticeable around the
pseudo-Brewster angle for the unstrained structure and around
that angle and near normal incidence when strain is taken into
account. No noticeable dependence of the lateral shift upon
magnetization was observed for a TE-polarized wave.

APPENDIX A

A. Derivation of the Green’s Functions

In order to obtain the Green’s functions, which provide analyti-
cal solutions for Eqs. (24), we transform them into a system of
equations for which solutions are known, namely,�
d 2

dz2
� a2

�
ξ�z� � 2iaδ�z�; ξ�z� � eiajzj;�

d 2

dz2
� a2

�
ζ�z� � 2

d
dz

δ�z�; ζ�z� � eiajzj sgn�z�: (A1)

This can be achieved by noting that, in both the anisotropic
magnetic film and the isotropic nonmagnetic substrate, the
set of Eqs. (24) can be shown to be equivalent, through linear
combinations, to

bU �α�
TM�∂z�

�
G�α�

xx G�α�
xz

G�α�
zx G�α�

zz

�
�
�

L�α�xx −L�α�xz

−L�α�zx L�α�zz

�
δ�z − z 0�

(A2a)

for TM polarization, andbU �α�
TE�∂z�G�α�

yy � L�α�yy δ�z − z 0� (A2b)

for TE polarization, where the spatial variation of Green’s
functions G�α�

ij �z − z 0� has been omitted for the sake of
simplicity.

Operators bU �α�
TE;TM�∂z� in Eqs. (A2) are defined asbU �1�

TE�∂z� � −∂2z − k2TE;bU �1�
TM�∂z� � k20ε1�∂2z � k2TM�;bU �2�
TM�∂z� � bU �2�

TE�∂z� � k20ε2�∂2z � k22z�; (A3)

where wave vectors kTE and kTM in the magnetic film, and the
z-axis component of the wave vector in the nonmagnetic sub-
strate are given by

k2TE � k20ε1 − k
2
x ; k2TM � k20

ε21 − ε
02

ε1
− k2x ; (A4)

k22z � k20ε2 − k
2
x : (A5)

The set of differential equations Eqs. (A2), with the form
assumed by operators bU �α�

TE;TM�∂z� in Eq. (A3), is similar to
Eq. (A1), which makes it then possible to obtain, in each region
of the bilayer, for each localization z 0 of the point source and for
each state of polarization, the following analytical expressions
that take into account general plane-wave solutions of the
homogeneous equations and particular solutions of the inho-
mogeneous problem:

Fig. 8. Reduced Goos–Hänchen shifts (a) ΔX TE and (b) ΔX TM as
functions of the angle of incidence θ for increasing values of the sub-
strate thickness in the vicinity of the normal incidence. Here, the mag-
netic film thickness is fixed at D1 � 0.269 μm, and the nominal
substrate thickness is d 2 � 0.296 μm. Note the reversal of the vertical
scale between (a) and (b).
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(1) For 0 < �z; z 0� < D1:

(a) 0 < z < z 0: with i � �x; z�, k � �x; y; z�,
G�1�

ik �z − z 0� � A�1�
ik eikTMz � B�1�

ik e−ikTMz ; (A6a)

G�1�
yk �z − z 0� � A�1�

yk e
ikTEz � B�1�

yk e
−ikTEz : (A6b)

(b) z 0 < z < D1: with i � �x; z�, k � �x; y; z�,
G�1�

ik �z − z 0� � �A�1�
ik � λ�1��ik e−ikTMz 0 �eikTMz

� �B�1�
ik − λ�1�−ik eikTMz 0 �e−ikTMz ; (A6c)

G�1�
yk �z − z 0� � �A�1�

yk � λ�1��yk e−ikTEz 0 �eikTMz

� �B�1�
yk − λ�1�−yk eikTEz 0 �e−ikTMz : (A6d)

(2) For D1 < �z; z 0� < D1 � D2:

(a) D1 < z < z 0: with �i; k� � �x; y; z�,
G�2�

ik �z − z 0� � A�2�
ik eik2z z � B�2�

ik e−ik2z z : (A6e)

(b) z 0 < z < D1 � D2: with �i; k� � �x; y; z�,
G�2�

ik �z − z 0� � �A�2�
ik � λ�2��ik e−ik2z z 0 �eik2z z

� �B�2�
ik − λ�2�−ik eik2z z 0 �e−ik2z z ; (A6f)

G�1�
yk �z − z 0� � �A�1�

yk � λ�1��yk e−ikTEz 0 �eikTMz

� �B�1�
yk − λ�1�−yk eikTEz 0 �e−ikTMz . (A6g)

In Eqs. (A6), coefficients A�α�
ij and B�α�

ij of the plane-wave
general solutions implicitly depend on the position z 0 of the
point source, and the particular solutions of the inhomo-
geneous set of differential equations in each of the materials
forming the bilayer are given by

bλ�1�� �

0BB@
	i k2x−k20ε1

2kTMk20ε1
0 −i kx

2k20ε1
� ε 0

2kTM
0 � i

2kTE
0

−i kx
2k20ε1

− ε 0
2kTM

0 	i k
2
TM

−k20ε1
2kTMk20ε1

1CCA; (A7a)

bλ�2�� �

0BB@
	i k2x−k20ε2

2k2z k20ε2
0 −i kx

2k20ε2
0 � i

2k2z
0

−i kx
2k20ε2

0 	i k
2
2z−k

2
0ε2

2k2z k20ε2

1CCA: (A7b)

B. Boundary Conditions for the Green’s Functions

The third stage of the solving procedure then consists of writing
boundary conditions for the Green’s functions at each physical
interface separating the different materials in the system. These
conditions follow from those concerning tangential Ex and Hy
(for TMmodes) and Ey andHx (for TE modes) components of
the electric and magnetic fields of light. In the magnetic film,
Maxwell’s equations yield

Hx �
i∂z
k0

Ey and Hy �
ik0�ε 0kx � ε1∂z�

k2x − k20ε1
Ex; (A8)

which, combined with boundary conditions for the fields and
Eq. (23), lead to boundary conditions for the Green’s functions
defined in Eqs. (A6) and (A7).

Thus, at z � 0, with k � �x; y; z�:
Hx → ∂zG

�1�
yk j0� � ∂zG

�V �
yk j

0−
;

Hy →
ε 0kx � ε1∂z

k2TE
G�1�

xk

����
0�

� ∂z
k20z

G�V �
xk

����
0−
;

Ey → G�1�
yk j0� � G�V �

yk j
0−
;

Ex → G�1�
xk j0� � G�V �

xk j0− : (A9)

Similarly, at z � D1, with k � �x; y; z�:
Hx → ∂zG

�1�
yk jD−

1

� ∂zG
�2�
yk jD�

1

;

Hy →
ε 0kx � ε1∂z

k2TE
G�1�

xk

����
D−

1

� ε2∂z
k22z

G�2�
xk

����
D�

1

;

Ey → G�1�
yk jD−

1

� G�2�
yk jD�

1

;

Ex → G�1�
xk jD−

1
� G�2�

xk jD�
1
: (A10)

Finally, at z � D1 � D2, with k � �x; y; z�:
Hx → ∂zG

�2�
yk j�D1�D2�−

� ∂zG
�V �
yk j�D1�D2��

;

H y →
ε2∂z
k22z

G�2�
xk

����
�D1�D2�−

� ∂z
k20z

G�V �
xk

����
�D1�D2��

;

Ey → G�2�
yk j�D1�D2�−

� G�V �
yk j�D1�D2��

;

Ex → G�2�
xk j�D1�D2�− � G�V �

xk j�D1�D2�� : (A11)

where k0z is the z component of the wave vector in vacuum.
The Green’s functions denoted G�V �

ij in Eqs. (A9) and (A11)
relate to the strain-dependent contribution to the (reflected or
transmitted) electromagnetic fields in the vacuum, and they write:

(1) For z < 0:

G�V �
ij �z − z 0� � B�V �

ij e−ik0z z ; �i; j� � �x; y; z�: (A12a)

(2) For z > D1 � D2:

G�V �
ij �z − z 0� � A�V �

ij eik0z z ; �i; j� � �x; y; z�: (A12b)

Substituting Eqs. (A6), (A7), and (A12) into Eqs. (A9)–(A11)
then leads to the full expressions of the Green’s functions in the
entire space. These expressions must be separately established
for TE and TM modes as well as for point source positions
either in the magnetic film or in the nonmagnetic substrate.
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