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Abstract
The tunnelling of a long-time (about 100 μs) frequency-modulated electromagnetic pulse
through a one-dimensional active dielectric photonic crystal and the influence of the frequency
modulation of the wavepacket on its time delay and peak velocity is theoretically investigated.
The possibility of tuning the characteristics of the transmitted pulse using frequency modulation
is demonstrated.
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1. Introduction

The tunnelling, or propagation of a quantum particle through
a potential barrier with a height larger than the particle’s
energy, is one of the fundamental quantum effects [1–3]. For
calculation of the tunnelling time, the problem is to find out
the velocity of a particle in the region where its pulse is
imaginary [4, 5]. The calculation of the tunnelling time of a
particle according to the stationary phase method leads to the
well-known Hartman effect, when the tunnelling time does
not exceed some finite value, which for a quite large barrier
thickness can result in a superluminar tunnelling velocity of
the particles or wavepackets [5–7]. Recently, attention has
been paid to investigation of optical soliton propagation [8],
and soliton pulse compression, as well as to the development
of slow- and fast-light methods for various applications. For
many practical reasons, a pulse of light should be delayed by
one to several times the pulse duration in a controllable way
to find potential application in the fabrication of tunable
optical delay lines based on coupled resonator optical wave-
guides and photonic crystal waveguides, including optical

communication systems, random-access memory, network
buffering, data synchronization, and pattern correlation [9]. It
has been shown that it is possible to delay a pulse by very
many pulse lengths [10].

For quite a long time, the interpretation of the Hartman
effect has been the subject of intense discussion. As a part of
these discussions, a classical optical problem concerning the
propagation of electromagnetic waves through macroscopic
photonic barriers [7, 11–24] was studied. As an example of
such barriers, one-dimensional (1D) photonic crystals (PCs)
can be considered, i.e. stratified periodic structures based on
materials with different refractive indices. Over the last few
decades, such structures have been the focus of intense the-
oretical and experimental investigations. The periodical
modulation of the refractive indices ensures the existence of
photonic band gaps (PBGs) in the spectra of the PCs, where
the transmittivity is vanishingly small, and the incident
radiation is almost totally reflected [25–28]. The propagation
of wavepackets within the PBG is similar to the tunnelling
process due to similarities in the stationary Schrödinger
equation and Helmholtz equation, which describe the
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spreading of electromagnetic waves in a 1D PC. A com-
parative study of the propagation of light in the PBGs of a PC
with tunnelling through a classically impenetrable barrier is
reported in [29]. It should be mentioned that tunnelling effects
are common phenomena in wave propagation through peri-
odic structures, for example, acoustic waves in phononic
crystals [30].

Analytical and numerical calculations of the wavepacket
time delay in 1D PCs have been carried out by many authors
[23, 24, 31–35]. A series of experiments on wavepacket
propagation in 1D PCs [12–14] confirmed the paradoxical
theoretical prediction about the convergence of the wave-
packet’s time delay to a finite value, which in the limit is
independent of the barrier thickness. The interpretation of
superluminar tunnelling of the wavepacket as a reshaping of
its time envelope (including asymmetric extension or com-
pression of the wavefront, bifurcation and a shift of the
wavepacket maximum along the time axis) [15–17] or as a
spreading of its different spectral components [18, 19] are
under serious criticism [23, 24, 31, 32]. One of the most
reasonable interpretations for this effect is that the tunnelling
time is not the propagation time, but it is the time for leaking
of the energy stored in the barrier [24]. Under this condition,
the evanescent modes inside the barrier do not propagate and
can be considered as virtual photons not existing beyond its
limits [23, 33]. In paper [36], it was shown that the super-
luminal tunnelling process of a two-dimensional electro-
magnetic pulse through a 1D PC is the propagation of the net
forward-going Pointing vector in a 1D PC.

Although the group velocity of the wavepacket spreading
inside a PC can be larger than the speed of light c and can
even be negative [21], the velocity of energy propagation
never exceeds the vacuum light speed. The appearance of a
superluminal advance or subluminal delay of the pulse peak
inside a PC or at the exit end is due to wave interference from
Bragg reflection [21]. Furthermore, it was shown that pulse
coherence can also affect the pulse peak velocity change from
superluminal to subluminal in 1D PCs [22]. In addition, an
approximate energy, momentum, and form invariance of an
ultrashort (about 2 ps) pulse transmitted through a 1D PC at
the PBG-edge transmission resonance, and it was demon-
strated that a strong transient localization of the optical energy
inside the PC provides a large and sensitively adjustable
group delay [24]. Recently, the Hartman effect has been
theoretically studied in 1D PCs with a defect layer doped by
three-level ladder-type atoms [37, 38], where the switching
from the positive to negative effect is possible by adjusting
the controlling parameter. A similar investigation for case of
doping the defect layer with three-level lambda-type atoms
was performed in [39].

However, one can point out some incompleteness of
these investigations, as their main goals were to solve
the paradoxical dependence of the relaxation time, while
some application aspects were not considered. Also, the
time delay dt of the transmitted pulse was estimated in
terms of the complex transmission coefficient T ( )w as

Tln2 2
0 0( ) ( ∣ ∣ )t f w w= ¶ ¶ + ¶ ¶w w w w= = with 0w being

the carrying frequency of the pulse, and the possibility of
tuning the time delay of the wavepacket and its peak velocity
using the initial frequency modulation (FM) of the input
pulse, as well as the influence of the amplification in the PC
on the transmitted pulse parameters were not investigated.

In this paper, we investigate the tunnelling of a long-time
(about 100 μs) frequency-modulated Gaussian electro-
magnetic pulse through a 1D active PC. In contrast to the
aforementioned publications devoted to different aspects of
tunnelling effects in PCs [23, 24, 29, 31–35], our goals are as
follows: i) to study the influence of frequency modulation of
the incident signal on its time delay; ii) to investigate the role
of amplification (which is appropriate for one of the PC
layers) in the Hartman effect; iii) to analyze the conditions of
sub- and superluminal pulse peak propagation. The paper is
organized as follows. In section 2, we describe the propaga-
tion of the electromagnetic waves in the 1D PC using a
coupled-mode approach and provide a general description of
the frequency-modulated wavepacket tunnelling in a 1D PC.
In section 3, we show the results of numerical calculations of
the time delay of the pulse without FM in an active PC. In
section 4, we investigate the influence of the FM on the
properties of the pulse transmitted through an active PC. In
the conclusion (section 5), we summarize the obtained results.

2. General analysis

2.1. Propagation of electromagnetic waves in a one-
dimensional PC

We focus on a finite-size two-component dielectric PC of
regular structure AB N( ) with a period D d d ,A B= + where
dA and dB are the thicknesses of the layers A and B,
respectively. We consider the normal incidence of the elec-
tromagnetic waves on the left hand surface of the PC sche-
matically presented in figure 1. The layers of the PC are
located parallel to the xy( ) plane and are supposed to be
infinite in the x- and y- directions, and the z-axis is normal to
the interfaces. The total thickness of the PC is L DN.= The
refractive indices of the PC’s constituents are n n nA 0 ˜= -
and n n n,B 0 ˜= + where n0 is an average refractive index,
and ñ is its deviation.

Figure 1. Schematic of the PC with the structure AB .N( ) Here Ei, Er,
and Et denote electric fields of the incident, reflected and transmitted
waves, respectively.
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The periodic variation of the refractive index in the PC
can be written as
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Here, z( )q is the Heaviside step function. Assuming a small
difference between the refractive indices of the layers, i.e.
n n ,0˜  we use the coupled-mode approach [41] to calculate
the transmission coefficient. The electric field inside
the PC can be presented as a superposition of waves running
in opposite directions: E z E z E ze e .z zi i( ) ( ) ( )= +b b+ - -

The periodic variation of the refractive index results in
the reflection of the incident wave of magnitude E z ,( )+

running along the z-direction, into the wave E z ,( )- which
propagates in the opposite direction. In turn, this wave
reflects into the wave running along the z-axis, etc. The
presence of the amplification in the system is taken
into account via its average increment α. In this case,
the dynamics of the electromagnetic waves can be
described by the set of differential equations for their
magnitudes:
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between the waves propagating parallel and antiparallel to
the z-axis, and the parameter n n c D2A B( ) ( )d w p» + -
describes phase synchronism detuning. The boundary condi-
tions for equations (2) can be presented as
E E E L0 , 0.0( ) ( )= =+ - Thus, the transmission coefficient
is the ratio of the transmitted and incident wave magnitudes,
and it can be written as
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where s i ,2 2( )s a d= + - and c20 B ( )b w= is the
wavevector; the angular frequency Bw satisfies Bragg’s
condition for the structure under consideration, and Tf¢ is
the phase of the complex transmission coefficient.

2.2. Tunnelling of the frequency modulated pulse through the
photonic crystals

Let us consider a pulse with the time envelope E t ,( ) propa-
gating with the carrier angular frequency .0w The time
envelope ET(t) of the transmitted pulse can be calculated
using the inverse Fourier transform of the convolution of the
initial pulse Fourier transform Ein˜ ( )W with the complex

transmission coefficient T ( )w as:
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The complex transmission coefficient T ( )w can be writ-
ten in the form
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The approximate expressions for ET(t) and the pulse time
delay for propagation in the PC can be obtained via a Taylor
expansion of T ( )w in the vicinity of the frequency :0w
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Let us assume that the initial Gaussian pulse has the
linear chirp C a 0

2t= with a constant speed of the FM
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where 0t is the pulse duration. In this case, neglecting the
terms of the Taylor series higher than the second order in
equation (7), the time envelope of the transmitted pulse has
the Gaussian form [42, 43]:
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A shift of the time envelope’s maximum is defined as
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The position of the carrier frequency in the PBG spec-
trum of the PC basically defines a shift of the pulse maximum.
The time st is analogous to the time in a co-moving frame of
reference in a dispersive medium. It should be noted that the
second derivatives Di and Dr are about 10–11 orders less than
the first derivatives Ki and Kr. Thus, neglecting the second
derivatives in equation (9), one can obtain the parameter
S C,» - and the pulse duration is conserved while trans-
mission through the PC: .p 0t t=

In [23, 33–35, 40] the time delay of the pulse transmitted
through the PC was calculated neglecting the third term

Tln 0( ∣ ∣ )∣w¶ ¶ w w= in equation (10), which tends to zero for
pulses without chirp and for frequencies far from the PBG
edge. In this case, the time delay can be written as:
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w
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Taking into account equation (3), the time delay dt inside
the PBG (d s< ) for the passive PC ( 0a = ) can be written as
[33]:
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In the limiting case of an infinite barrier L , ¥ the
time delay converges to the finite quantity n sc ,d 0 ( )t = and
in the PBG center (for 0,d = 0a = ) the time delay is

n c ,d 0 c
1( )t s= = W- where cW is the PBG width. The infinite

tunnelling speed paradox can be solved so that the time delay
should not be considered as the time of the pulse transmission
through the barrier. The spatial size of the pulse is larger than
the barrier width L, and the pulse propagates quasi-statically.
As a result, the field distribution inside the barrier is sta-
tionary. In this sense, the PC has an analogy to a capacitor,
and the time delay is the ratio between the average stored
energy and the input power [44]. The radiation energy inside
the PBG is concentrated near the barrier surface, and the
energy density decays rapidly with the barrier length. Thus,
the energy stored in the PC for relatively large L tends to a
finite value, i.e. the PC becomes saturated. It is precisely this
fact that explains the time delay saturation.

3. Time delay of a pulse without frequency
modulation in active photonic crystals

First, we focus our investigation on the influence of amplifi-
cation on the spectrum of the PC and on the time delay of the

pulse without a chirp, which is tunnelling through such a
system. Next, we will compare these results with those
obtained for pulses with FM.

The time delay dt in the middle of the PBG does not
change in essence while taking into account the amplification
in the active PCs. The Bragg reflection does not allow
penetration of the radiation of the angular frequencies Bw w»
in the depths of the structure, and the energy capacity of the
PC at these frequencies practically does not change. On the
other hand, at the PBG edges, one can observe effects related
to changing .dt For Bw near these frequencies, the derivative

Tln 0( ∣ ∣ )∣w¶ ¶ w w= cannot be neglected, and in this case, for
the calculation of dt , one should use equation (10). However,
for pulses without FM, the parameter S 1 [see the
equation (9)], and the time delay of the transmitting pulse
maximum can be estimated by equation (11).

Figure 2 shows the transmission spectra T∣ ( )∣w and the
time delay dt calculated according to equation (11) for the
passive and active PCs illustrated in figure 1 with the material
parameters n 30 = and n 0.02.˜ = These values correspond to
typically used semiconductor structures based on
Al Ga As0.7 0.3 at the angular frequency Bw = 1.2566 rad · PHz,
corresponding to a wavelength of about 1.5 μm [45]. The
thicknesses of the layers A and B are d 124.2 nmA = and
d 125.8 nm,B = and the number of periods of the PC is
N = 600. The solid lines show the transmission characteristics
of the passive PC ( 0a = ), the dotted and dashed curves
correspond to ones for the PC with the amplification coeffi-
cients L 0.15a = and L 0.45,a = respectively. For these
parameters, the PBG width is approximately 0.009 ,c BwW »

Figure 2. Spectra of the absolute values of the transmission
coefficients T∣ ( )∣w (a) and the time delay dt of the transmitted pulse
(b) for the passive PC ( 0a = ) (solid lines) and for the active PC
with the amplification coefficients L 0.15a = and L 0.45a = (dotted
and dashed curves, respectively).
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or 11.31 rad·THz. As one can see from equation (3), when
the coupling constant σ of the waves propagating parallel and
antiparallel to the z-axis becomes equal to the phase syn-
chronism detuning parameter δ, the spectrum of the complex
transmission coefficient T ( )w of the passive PC exhibits a
singular point where the denominator of equations (3) turns to
zero; thus T 0,∣ ∣  so the energy output does not need the
presence of the input radiation, i.e. generation takes place. It
should be noted that every singular point corresponds to one
of the modes of the distributed feedback laser [41]. At the
generation point, the time delay increases to infinity, because
the PC radiates at zero input energy. The increase of the
amplification leads to a shift of the singular point of T ( )w
towards higher frequencies at the high-frequency PBG edge,
corresponding to ,d s> while at the low-frequency PBG
edge the singular point shifts to lower frequencies (see the
dashed lines in figure 2).

From equation (12), it follows that for the passive PC in
the frequency region where ,d s the time delay of the
transmitted pulse increases up to the value corresponding to
the transmission time of the electromagnetic waves propa-
gating through the PC with the velocity of light in the med-
ium, t n L c.d 0= In the active PC, dt increases in the spectral
bands which correspond to .d s» This fact can be explained
by a significant penetration of the radiation of the frequency at
which d s= into the structure, as well as by multiple
reflections in this band and by the increasing of the energy
capacity of the PC.

It should be noted that in the frequency region before the
singular point, the phase Tf¢ changes rapidly, and its deriva-
tive Tf w¶ ¢ ¶ can change its sign, which means the possibility
of negative values of .dt

According to equation (10), the time delay depends on
dispersion of the transmission coefficient’s phase

.0( )∣f w¶ ¢ ¶ w w= Taking into account the term
S Tln 0( ∣ ∣ )∣w- ¶ ¶ w w= in equation (10), one can see that not

only the parameters of the PC define the value of ,dt but also
the initial properties of the pulse do, particularly, its frequency
modulation, i.e., the chirp.

4. Time delay of a frequency modulated pulse
transmitted through photonic crystals

In this section, we investigate the influence of the input pul-
se’s chirp on the transmitted pulse properties. We solve
equation (2) for a Gaussian input pulse defined by
equation (4) for the pulse duration 100

4t = - s with the linear
FM C 108~ , and compare the results with those obtained for
the pulse without FM, but with the same spectrum width. The
duration of such a pulse without FM is can be estimated using

C C1 100 0
2

0
12t t t¢ = + » = - s.

Figures 3(a) and (b) show the normalized spectral den-
sities of the pulses for the FM speed a 1015= s−2 and
a 1016= s−2, respectively. The solid lines correspond to
spectral densities E Ein in

max∣ ˜ ( )∣ ∣ ˜ ( )∣W W of the input pulses, and
the dashed, dash-dotted and dotted lines correspond to spec-
tral densities E ET in

max∣ ˜ ( )∣ ∣ ˜ ( )∣W W of the transmitted pulses for

the PC with the amplification parameters 0,a = L 0.15,a =
and L 0.45a = . The carrier frequency of the input pulse

1.26230w = rad·PHz is close to the PBG edge, and the
duration of the input pulse is 100

4t = - s. The yellow areas
show the PBG.

For the input pulse with FM speed a 1015= s−2, the
increase of the amplification coefficient leads to a decrease of
the ET˜ ( )W peak at the PBG edge (see figure 3(a)), as the
singular point discussed above shifts towards higher fre-
quencies (see figure 2(a)) and the high-frequency component
of the pulse is not enhanced much. For the pulse with a larger
chirp, a 1016= s−2, the high-frequency component of the
pulse is enhanced at the transmission, as one can see from
comparison of the dashed, dash-dotted and dotted lines in
figure 3(b). This fact results in the appearance of a second
peak at a frequency higher than the frequency of the PBG
edge. Comparing the dotted curves in figures 3(a) and (b) one
can see that the pulse with relatively small chirp transmits
without any strong reshaping.

We restrict further consideration to the case when the
input Gaussian pulse is narrow enough to exclude strong
reshaping of its leading front at transmission, as discussed
above. It should be noted that equation (10) for the time delay
is inapplicable for strong transmitted pulse reshaping because
the time envelope shape is no longer a Gaussian one, as it was
assumed while deriving the analytical expression in
equation (10).

It should be noted that in accordance with the fact
that the transmitted pulse spectrum is defined by both
the input pulse spectrum and the transmission spectrum
E E T ,out in∣ ˜ ( )∣ ∣ ˜ ( ) ( )∣W W W the coincidence of the spectral
densities of the input pulses Ein∣ ˜ ( )∣W with and without chirp
results in the coincidence of the spectral densities of the
corresponding transmitted pulses. Thus, the pulses with

Figure 3. The normalized spectral densities E Ein in
max∣ ˜ ( )∣ ∣ ˜ ( )∣W W and

E ET in
max∣ ˜ ( )∣ ∣ ˜ ( )∣W W of the input (solid lines) and transmitted pulses

for the PC with the amplification coefficients 0,a = L 0.15a = and
L 0.45a = (dashed, dash-dotted and dotted lines, respectively), for

the modulation speed a 1015= s−2 (a) and a 1016= s−2 (b). The
carrier frequency of the input pulse is 1.26230w = rad·PHz , and
the input pulse duration is 100

4t = - s. The yellow areas show
the PBG.
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different chirps but with equal spectrum widths are indis-
tinguishable. However, the difference in the phase of Ein˜ ( )W
leads to significant differences in the forms of the time
envelopes E tT ( ) of the transmitted pulses.

This situation is illustrated in figure 4, where we present
the evolution of the dimensionless time envelopes with the
time and input pulse duration 0t for an equal spectrum of
incident pulses with and without chirp (figures 4(a)–(d)). The
color depicts the values of the normalized time envelope of
the input E t Ein 0( ) (figures 4(a) and (c)) and transmitted
pulses E t Eout 0( ) (figures 4(b) and (d)) for the carrier fre-
quency 1.26230w = rad PHz at the high-frequency PBG
edge. The FM speed is a 5 1015·= s−2, and the amplification
coefficient is L 0.15.a =

Both pulses (with and without chirp) initially have their
spectral components enhanced in the active PC. In the case of
the pulse with a chirp (figure 4(b)) these components belong
to the leading edge of a long-time input pulse (figure 4(a)).
The transmitted pulse loses its low-frequency components
filtered by the structure. Consequently, one can see that the
transmitted pulse maximum is located before the maximum of
the input pulse, i.e. the negative time delay of the transmitted
pulse takes place (compare figures 4(a) and (b)). The time
envelope reshaping is caused not only by the amplification in
the PC but also by the filtration of the spectral components
distributed over a period of the pulse. For the reversed linear
FM (C 0< ), the time delay is positive, caused by the cut-off
of the leading edge of the pulse and the enhancement of the
trailing edge of the pulse. The time delay depends on the
chirp, thus equation (11) cannot be used any more for the

calculation of .dt In the first approximation, one can use
equation (10). It should be mentioned that the transmitted
pulse duration is less than the duration of the input pulse.
Only conventionally, this fact can be treated as ‘compres-
sion’, as the transmitted pulse is not a complete transforma-
tion of the input one. The origin of the ‘compression’ is
connected to the fact that the transmitted frequency band is
localized in a narrow time interval on the leading edge of the
pulse.

Considering the transmission of a more short-time pulse
but without a chirp (see figures 4(c) and (d)), it should be
noted that the time delay is only defined by the dispersion of
the complex transmission coefficient T .( )w The transmitted
spectral components are uniformly distributed by the incident
pulse duration. In the course of multiple reflections inside the
PC, the transmitted pulse is formed on the basis of these
components. Due to the dispersion of T ( )w , the transmitted
pulse suffers dispersion spreading and becomes frequency-
modulated. A significant spectrum narrowing of the trans-
mitted pulse in comparison to the input pulse, along with
dispersion spreading, causes the increase of the transmitted
pulse duration (compare figures 4(c) and (d)). As it has been
mentioned above, the time delay of the transmitted pulse’s
maximum can be estimated using equation (11). Due to
amplification of the PC, the peak power of the transmitted
pulse is larger than the peak power of the input pulse (see
figures 4(a)–(d)).

Thus, the FM of the pulse makes it possible to reverse the
time delay of the transmitted pulse and to decrease its dura-
tion, in contrast to the pulse without a chirp.

Figure 4. Color plot of the time envelopes E t E0( ) evolution with the incident pulse duration :0t the input pulse with the FM speed
a 5 1015·= s−2 (a) and the short-time input pulse without a chirp (c) (here the input pulse duration range corresponds to the one for the pulse
with a chirp with the same spectral width); the transmitted pulse with chirp (b) and without chirp (d). The carrier frequency of the input pulse
is at the PBG edge 1.26230w = rad·PHz. The color depicts the values of E t E .0( )
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Figure 5 presents the time delay dt of the Gaussian pulse
as function of the FM speed a for two values of the input
pulse duration 100

4t = - s and 2 100
4·t = - s (the solid and

dashed lines, respectively). The amplification coefficient of
the PC is L 0.15,a = and the carrier frequency of the pulse at
the PBG edge is 1.26230w = rad·PHz. One can single out
two regions of a where the characteristics of the transmitted
pulse are similar. In accordance with the discussion presented
above, the pulse with a positive chirp (i.e., a 0> ) suffers a
negative time delay. However, 0dt < can occur for negative
FM speed as well until the third term in equation (10),
S Tln ,0( ∣ ∣ )∣w¶ ¶ w w= starts to have a significant impact on .dt
The component of the shift, which is proportional to ,Tf w¶ ¢ ¶
does not depend on the chirp and its value is about 10−11 s
(see figure 2(b)). This term dominates in the case of small
chirp. It should be noted that for the pulse with 100

4t = - s
( 2 100

4·t = - s), the time delay is positive for the negative
FM speed until a 3.7 107·= - s−2 (a 0.9 107·= - s−2), as
one can see from the upper inset in figure 5. In the absence of
the FM (a = 0) the time delay is negative. The lower insets
in figure 5 show the typical relations between the peak power
of the input (the bold black lines) and transmitted (the narrow
lines) pulses (the proportions are not kept) for each region of
the dt with similar behavior: yellow and grey areas corre-
spond to 0dt > and 0,dt < respectively.

The dependence of the time delay on the FM speed is not
monotonic. Firstly, the absolute value of dt increases with the
increase of a .∣ ∣ In this region of the FM speed, the time
envelope of the transmitted pulse forms due to the dispersion
shift of the tunnelling Gaussian pulse. The further increase of
the absolute value of the FM speed ( a 1014∣ ∣ > s−2) leads to a
decrease of .d∣ ∣t Such behavior can be explained as follows:
the time coordinate of the transmitting frequency components
of the pulse with the increase of the chirp is approaching the
input pulse maximum (at t = 0). For a 5 1015∣ ∣ ·> s−2 (for
the system under consideration) the spectral components,

which belong to a narrow part of the input pulse front, are
broadening, and the influence of the dispersion shift on dt
becomes negligible. As a result, the shape of the transmitted
pulse deforms and the second peak emerges (see figure 3(b)).
Thus, the change of the FM speed allows tuning of the time
delay of the transmitted pulse.

The chirp of the pulse can be also changed by variation
of the input pulse duration. One can see that the increase of 0t
leads to an increase of the absolute value of dt for
a 0.75 1015∣ ∣ ·< s−2. For large values of the FM speed, the
influence of 0t on dt is negligible. It should be noted that the
increase of the input pulse duration decreases the value of a,
which corresponds to non-Gaussian deformation of the
transmitted pulse.

The defined value of the pulse time delay allows esti-
mation of the velocity of the pulse peak propagation through
the PC of thickness L as V L t .m m= Time tm is the time at
which the energy density reaches a maximum, and is related
to the time delay via t t ,d m vact = - where tvac is the propa-
gation time of the electromagnetic wave through the same
distance L in a vacuum. It is well-known that in the vicinity of
the PBG edge, the group velocity of the electromagnetic wave
drops down [28, 31] to values much less than the speed of
light in a vacuum. It should be pointed out that, in general,
superluminal wavepackets’ appearance is related to pulses
with quite a flat leading edge, e.g., to exponential-shaped
pulses [46]. Nevertheless, using FM of the Gaussian pulse, it
is possible to increase Vm and even to exceed the speed of
light in a vacuum. The superluminal peak propagation takes
place when t t .m vac∣ ∣ < Taking into account equations (9) and
(10), one can find the region of the FM speed, where V c:m >

T
a

t

Tln

2

ln
. 13

0
2

vac

0
2( ∣ ∣ ) ( ∣ ∣ )

( )f w
t w

f w
t w

¶ ¢ ¶
¶ ¶

< <
+ ¶ ¢ ¶

¶ ¶

For the system under consideration, for 0w at the high-
frequency PBG edge and 100

4t = - s, the condition
equation 13 is satisfied within the interval 3.6717 107·-
s−2 a 3.3967 107·< < - s−2, as shown by the yellow areas
in figure 6. As one can see from figure 6, the peak velocity
can be both positive and negative. The latter happens when
the maximum of the transmitted pulse forms before the input
pulse peak is formed [46–48]. In the vicinity of td vact = -
(i.e. when tm = 0) Vm demonstrates rapid growth with the FM
speed increase, and the discontinuity and sign change of Vm

takes place (see inset in figure 6). It should be noted that the
superluminal peak propagation does not contradict the special
relativity postulate, as the information about the signal
transfers on its leading edge. Outside the aforementioned
interval, the peak propagation is subluminal, and further
increase of a∣ ∣ leads to Vm decay, which is in agreement with
previous results [28, 31].

5. Conclusions

To conclude, the results of our investigations are as follows. I
We have shown that the presence of amplification in a

Figure 5. The time delay dt of the transmitted pulse as a function of
the FM speed a for the input pulse durations 100

4t = - s (the solid
lines) and 2 100

4·t = - s (the dashed lines) for 1.26230w =
rad·PHz. The insets demonstrate the typical time envelopes of the
input and transmitted pulses (the bold and narrow lines, respectively)
in each region shown with yellow and gray areas.
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photonic crystal can lead to a negative time delay of the
transmitted pulse, even in the absence of frequency modula-
tion, due to reshaping of the time envelope of the input
wavepacket. II. Changing the frequency modulation, one can
effectively tune the time delay of the transmitted pulses, in
particular it is possible to realize both positive and negative
time delay. III. In addition, we established values of the fre-
quency modulation speed which correspond to superluminal
peak pulse propagation of the tunnelled pulse. Switching of
the pulse time delay can be useful for fabrication of optoe-
lectronic emission control devices. The most promising of
them are devices which realize controllable pulse delay. Such
devices are used in different optoelectronic circuits. We also
estimated the values of the frequency modulation speed which
correspond to changing of the pulse peak velocity behavior
from subluminal to superluminal.
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