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1. Introduction

One of the main factors limiting the application of spin waves 
(SWs) [1–3] in signal processing and transmission is damping; 
therefore, much effort is devoted to an understanding of the 
nature of SW damping [4–9] and to exploit the mechanisms 
of its compensation [10–12]. The microscopic models of 
damping are complex due to the variety of scattering processes 
at different timescales in which spin dynamics is involved. All 
of these effects (influencing directly or indirectly damping of 
the SW dynamics) can be included phenomenologically in the 
Landau–Lifshitz equation (LLE) [13], if they act effectively 
in timescales in the range from fractions of ns to tens of ns 
(which correspond to the typical frequencies of SW preces-
sion). This classical equation  describes damped precession 
of the magnetization in an effective magnetic field. LLE is 
the equation for a continuous medium, where all atomic fea-
tures of the system, related both to the structure and to the 
physical mechanisms, are reflected in the continuous distribu-
tion of material parameters, describing different properties of 
the system. The internal components of the effective magnetic 

field (exchange, dipolar and anisotropy fields) are expressed 
by material parameters such as exchange length, saturation 
magnetization and the anisotropy constant. The damping is 
included in a separate term of the LLE, which is responsible 
for the torque, which drags the precessing magnetization 
towards the direction of the effective field. The magnitude of 
this torque and, as a result, the strength of damping, are set 
by the value of the empirical parameter called the damping 
constant. This material parameter holds contributions from 
different energy transfer and dissipation processes on a local 
scale.

In magnetic inhomogeneous systems, like magnetic nano-
structures composed of elements made of different materials, 
the damping parameter is spatially dependent. Definition of 
the effective damping parameter is not trivial for nano-struc-
turalized materials. Damping of collective SW excitations in 
an inhomogeneous system depends not only on its material 
composition but also on its geometry and spatial distribution of 
amplitude of SWs (which is non-uniform in nanostructures). 
Hence, the lifetime of SW excitation could be a better measure 
of the strength of damping for a given eigenmode [14] than the 
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damping parameter, because it can be directly obtained from 
the numerical solution in the frequency domain. The lifetime 
describes the characteristic time of the exponential decay of 
the amplitude of the mode. This parameter can be related to 
the linewidth in experimentally measured SW spectra (in fer-
romagnetic resonance (FMR), time resolved magneto-optical 
Kerr effect microscope (TR-MOKE) or Brillouin light scat-
tering measurements (BLS)), therefore, we will use the life-
time to describe the influence of damping on collective SW 
dynamics in inhomogeneous magnetic nanostructures.

The experimental results for inhomogeneous (i.e. nano-
structured) systems show the significant dependence of the 
linewidth on the mode profiles [15, 16]. The lifetime depends 
on the damping torque, which varies spatially both with the 
local value of the damping parameter and with the amplitude 
of SW precession at the given position. The latter depend-
ence can be explained by analyzing the damping term in the 
LLE, where the strength of damping torque increases with 
increase of the angle between the effective magnetic field 
and precessing magnetization vector. It is due to the pres-
ence of the cross-product ×M Heff. Thus the modes which 
will have the amplitudes concentrated in the parts of the sys-
tems which are characterized by a lower damping parameter, 
will be damped to a smaller extent than the modes which are 
distributed more homogeneously. As a result, the effective 
lifetime (or damping parameter) cannot be calculated as a 
volume average of lifetimes (or damping parameters) of the 
constituent materials. This limitation is even valid for the 
fundamental mode which also exhibits spatial deviation of 
the amplitude in different constituents due to different satur-
ation magnetization, partial pinning and the presence of the 
demagnetizing fields.

In this paper we will establish the relation between the 
lifetime of SWs eigenmodes and their spatial distribution in 
magnonic structure, composed of two different ferromagn-
etic materials, differing also in damping. We will consider 
planar magnonic crystals (MCs) and quasicrystals (MQs) 
made of permalloy (Py) (low-damped material) and Co 
(high-damped material) wires [17–19]. Numerical calcul-
ations with the finite element method (FEM) in the frequency 
domain will be performed for two sets of planar geometries 
differing in the ratio between the in-plane dimension (width 
of wires, period) and out-of-plane dimension (thickness). 
A comparison between periodic and quasiperiodic systems 
will be presented to analyze the impact of the two effects 
which enable us to distinguish the quasiperiodic from the 
periodic system: presence of a complex band spectrum and 
localization of bulk modes. We will discuss the change of 
lifetime within the magnonic bands and the global change of 
this parameter between different bands with the increase of 
frequency, starting from the metamaterial limit, through the 
frequency regions, where the concentration in Py subsystems 
is observed, to a higher frequency range, where the modes 
start to concentrate in Co wires.

The paper is organized as follows. After the introduction 
we will discuss: the geometry of the investigated systems, 
the model, the numerical techniques and tools used to find 
the frequency spectrum and the profiles of modes. Then we 

will present and discuss the results—the dependences of life-
time and concentration factor (CF) in Py on frequency. These 
dependences will be explained with the aid of plots presenting 
the profiles of modes. The paper will be summarized in a sepa-
rate concluding section.

2. Model and structures

We considered planar structures composed of ferromagn-
etic wires arranged in periodic or Fibonacci (i.e. quasiperi-
odic) sequences—see figure 1. The wires were made of Py 
and Co—metallic ferromagnets characterized by lower and 
higher damping, respectively. Both types of wires have the 
same dimensions. We investigated two regimes of sizes, both 
for periodic and quasiperiodic sequences, where the widths 
of wires (along the x-axis) were equal to 91 or 250 nm. The 
thickness of wires (along the y-axis) was the same for all sys-
tems considered by us (30 nm) and their length (along the 
z-axis) was assumed to be infinite. The wires were in direct 
contact which ensured exchange coupling between succes-
sive wires.

The quasiperiodic sequence of wires was achieved from the 
following Fibonacci recursion rule [20]: SN+1  =  [SN  +  SN−1], 
where the initial structures are: S1—single Co stripe and 
S2—single Py wire. Then, the next structures are con-
structed according to the indicated rule by merging the two 
previous structures (putting SN on the left and SN−1 on 
the right to achieve the SN+1 sequence). We followed this 
recursion procedure to obtain a quasiperiodic (Fibonacci) 
sequence S10, consisting of 55 wires (of two kinds: Co and Py). 

Figure 1. The considered magnonic systems: (a) Fibonacci 
structure— MQ and (b) periodic structure— MC. The structures 
are planar and consist of infinitely long Py and Co wires in direct 
contact with each other. The external magnetic field μ0H0  =  0.1 T  
is directed along the wires and is strong enough to saturate the 
samples. The section of MC in (b) has the same amount of wires 
as for the MQ presented in (a). We investigated the MC and MQ 
consisting of an equal number of wires (i.e. 55) to compare properly 
the results obtained for both structures.
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Because of the Fibonacci recursion rule, there will appear  
two Py wires next to each other within the structure. Although 
these wires are not separated and form one Py wire of double 
width, we will still count them as two Py wires.

To refer the results obtained for quasiperiodic structure to 
outcomes from the periodic structure, we have investigated a 
section of periodic system composed of 55 Py and Co wires 
repeated alternately. Such a number of wires is the same as 
in the considered S10 Fibonacci sequence. We also assumed 
the sizes of the wires to be the same (as for the quasiperi-
odic structure) which results in the same total width of the 
sequence. The assumptions about the sizes of the periodic and 
quasiperiodic structures make the strength of dipolar interac-
tions comparable for both systems.

We assumed that the static magnetic configuration of the 
considered structures is saturated by the external magnetic field 
applied in the direction of the wires’ axis. The field for which 
we have made our calcul ations was equal to µ =H 100 mT0 0 .  
The material para meters of Co and Py were: saturation magnet-
izations = × −M 1.445 10 A mCo

6 1, = × −M 0.86 10 A mPy
6 1 ;  

exchange constants: = × − −A 3.0 10 J mCo
11 1, APy = 1.3 ×  

− −10 J m11 1; and Landau damping parameter: α = 0.1Co  
and α = 0.01Py , respectively. The gyromagnetic ratio 
γ = −176 GHz T 1 was assumed to be the same for Co and Py 
wires.

To describe magnetization dynamics we have solved the 
LLE which is the equation of motion for the magnetization 
vector M:

( )
⎡
⎣⎢

⎤
⎦⎥

γµ
α

= × + × ×
M

M H M M H
t M

d

d
,

S
0 eff eff (1)

where: α is the damping coefficient, μ0 is the permeability of 
the vacuum, MS is saturation magnetization and Heff is the 
effective magnetic field. The first term in the LLE describes 
precessional motion of the magnetization around the direction 
of the effective magnetic field and the second term enriches 
that precession with damping. The effective magnetic field 
in general can consist of many terms, but in this paper we 
will consider only the most important comp onents: external 
magnetic field H0, nonuniform exchange field Hex and dipolar 
field Hd : = + +H H H Heff 0 ex d.

We considered the linear regime of magnetization 
dynamics where we could clearly discuss the SW motion on 
the background of the static magnetic configuration in satur-
ation state and investigate the SW eigenmodes in the system 
characterized by harmonic dynamics in time: eiωt, where ω is 
the angular eigenfrequency. The LLE (1) for the magnetiza-
tion vector M can be linearized in the form of a set of two 
differential equations  for complex amplitudes of dynamical 
components of magnetization mx and my:
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where = ω
γµ

Ω
0
 is dimensionless frequency. The homogeneous  

external field has only a z-component. [ ]= HH 0, 0,0 0 . The 
exchange field for the system in saturation state has only nonzero 
dynamical components: ( ) [ ( ) ( ) ]= ω ωt h hH r r r, e , e , 0 .x

t
y

t
ex ex,

i
ex,

i  
The relation between the dynamical exchange field and the  
amplitudes of dynamical magnetization ( ) ( )= =ωtm r m r, e ti   

ω ωm mr re , e , 0x
t

y
ti i[ ( ) ( ) ] can be expressed in linear approx-

imation as [21]:
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S S

t
ex

0

i (4)

The second term on the right hand side of equations (2) and (3) 
has an exchange origin and results directly from equation (4). 
Our calculations are based on the FEM where the model of 
continuous medium is investigated. The exchange interac-
tion between the successive stripes is included by appropriate 
boundary conditions at the Co/Py interfaces. We used the nat-
ural boundary conditions resulting from the exchange oper-
ator (4) implemented in the linearized LLE equations (2) and 
(3). As was pointed out in [17, 22] these boundary conditions 
are: (i) continuity of dynamical components of magnetization 
and (ii) continuity of first derivatives of the dynamical comp-
onents of magnetization multiplied by factors: A/MS.

For the considered geometry the static components of 
the demagnetizing field are equal to zero; only the x- and  
y-comp onents of the dynamical dipolar field are nonzero. Using 
the magnetostatic approximation, the demagnetizing field can 
be expressed as a gradient of the scalar magnetostatic potential:

( ) [ ( ) ( ) ] ( )ϕ= = − ∇ω ω ωt h hH r r r r, e , e , 0 e .d x
t

d y
t t

d ,
i

,
i i (5)

With the aid of the Gauss equation, we obtained the following 
equation  which relates magnetization and magnetostatic 
potential:

ϕ∇ −
∂

∂
−

∂

∂
=

m

x

m

y
r

r r
0.x y2 ( ) ( ) ( )

 (6)

Equations (5) and (6) can be used to find dynamic comp onents 
of the demagnetizing field implemented already in equa-
tions (2) and (3), i.e. the last terms on the right hand side of 
these equations.

The linearized LLE in the form of the eigenvalue problem 
(2) and (3) was solved by the use of FEM with the aid of 
COMSOL Multiphysics software [23, 24]. Unlike in our 
previous work [17], we do not neglect damping here and we 
studied the influence of damping on SW spectra. From our 
calculations we have found the complex eigenfrequencies  
f  =  ω/2π  =  Re(  f  )  +  iIm(  f  ), where the real part denotes the 
frequency of the SW and the imaginary part is connected to the 
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lifetime τ of the SW modes by the relation: Im(  f  )  =  (2τ)−1 
[4, 25]. The parameter τ describes the exponential decay (in 
time) of the energy carried by SW. Thus, from the numerical 
solutions (complex eigenfrequencies) we can get information 
about the lifetime τ of each eigenmode.

To show how much of SW amplitude is concentrated in Py 
wires, we have introduced the measure of concentration for 
each mode, which we call CF for Py. We defined this para-
meter according to the formula:

∫

∫
=δ

δ

δ
+

m s

m s
CF

d

d
,

Py stripes

2

Py Co stripes

2
 

 

 

 (7)

where, in the numerator we have integrated the squared 
amplitude of the in-plane or out-of-plane component of 
the dynamical magnetization δm  in the Py wires (where 
     δ x yis or  , accordingly). The CF is normalized by the integral 

of the same kind calculated for the whole system. The symbol 
ds in (7) denotes the element of area for an x–y cross-section 
of the structure. Thus the integrals in (7) are 2D. The values of 
CF equal to 0 and 1 describe the mode which is concentrated 
entirely in Co and in Py, respectively. We will show in the next 
section that there is a strict correlation between the CF and the 
lifetime of the SWs in MCs and MQs.

It is worth noting that in the considered range of frequen-
cies the modes are almost homogeneous through the thick-
ness of the structure [26] and 1D integration (i.e. along the 
x-direction) could be used in equation (7) as a good approx-
imation. The modes start to be quantized through the thick-
ness at higher frequencies than considered in this paper.

3. Results and discussion

We will discuss separately the outcomes for the systems 
composed of narrower (w  =  91 nm) and wider (w  =  250 nm) 
wires. The results for the structures with narrower wires are 
presented in figures  2(a)–(d) where the lifetime and CF for 
successive eigenmodes dependent on frequency are showed. 
The gray and green points forming the horizontal lines in 
figures 2(a) and (b) are the lifetimes for homogeneous films 
made of Py and Co, respectively. In this case, we performed 
calculations for uniform stripes of extended widths equal to 
the total width of the whole 55-element sequence of wires. 
For the assumed direction of the external magnetic field (i.e. 
along the infinitely long wires) the modes quantized along 
the width of the structure are of the Damon–Eshbach type. 
For SWs of this type the SW lifetime τ in a homogeneous 
film is independent of the frequency [25]. This peculiar fea-
ture is confirmed in our numerical calculations. This property 

Figure 2. (a) and (b) Lifetime of SW eigenmodes versus their frequencies for (a) Fibonacci structure—MQ and (b) periodic structure—
MC, consisting of 55 wires of 91 nm width. (c) and (d) The CF for the mx component (brown and violet points) and my component (orange 
and light blue points) of SW eigenmodes, showing the strength of the excitation within the Py subsystem for (c) MQ and (d) MC. The grey 
areas mark the most pronounced frequency gaps. The green (grey) horizontal series of points show the lifetime of eigenmodes obtained 
for solid Co (Py) homogeneous film of the same thickness and external width as considered for MC and MQ structures. The dashed 
vertical green and grey lines mark the frequency of the first FMR mode obtained for homogeneous Co and Py film, respectively. Dark blue, 
light blue and violet points which can be found in the gaps show the lifetime and CF of selected surface modes. Red, orange and brown 
points show the lifetime and CF of the rest of the modes (mostly bulk modes) found for the Fibonacci and periodic structures. The dashed 
horizontal lines mark the lifetime of the homogeneous stripe of averaged material parameters.
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is not inherited by nanostructures, where the dependence 
of the lifetime on frequency is observed. The red and dark 
blue points in figures 2(a) and (b), representing lifetimes of 
the modes in nanopatterned films, are located between levels 
denoting the lifetimes of homogeneous films. They show evi-
dent dependence on the frequency with two interesting trends: 
(i) global—the lifetime is relatively short at lowest frequen-
cies (in the metamaterial limit), then increases with increasing 
frequency, reaches a maximum at about 18 GHz, and decays 
with the further increase of the frequency; (ii) local—within 
each magnonic band (gaps between bands are marked by ver-
tical gray stripes) the lifetime increases monotonically with 
frequency, reaching the highest (the lowest) value at the top 
(at the bottom) of the band. These trends are common for both 
periodic and quasiperiodic structures. There is one important 
difference between the frequency spectra of both structures. 
The spectrum consists of a finite number of gaps and well-
defined bands for the periodic system (figures 2(b) and (d)) 
and is determined by a complex set of gaps for the quasiperi-
odic system (figures 2(a) and (c)) [17]. Due to the complexity 
of the quasiperiodic structure we observe a fractal spectrum 
[17] with a lot of fine gaps and magnonic states between them. 
In the considered periodic structure the first magnonic gap 
appears in the frequency range 16.5–19 GHz, while in MQ the 
relatively wide gap starts at 14.5 GHz. For the quasi periodic 
system more modes have a lifetime closer to the maximum 
value, than for MC. We also noticed that, for the Fibonacci 
structure, the lowest modes have got slightly longer lifetimes 
than modes found in the periodic structure. It results from the 
different average composition of periodic and quasiperiodic 
structures built from Co and Py wires of the same dimen-
sions. For the periodic system the filling proportion of Py is 
equal to 50% (neglecting the ambiguities related to the selec-
tion of the first and the last wires in the sequence), while in 
the Fibonacci structure this parameter is more or less equal to 
the golden number, which is approximately equal to 61.8%. 
This suggests that the lifetime for the quasiperiodic system 
in a metamaterial (long wavelength) regime should be larger 
and closer to the value characteristic for the solid Py film than 
for the periodic system. The lifetimes calculated numerically 
for homogeneous systems made of averaged material para-
meters—A, MS and α (with volume fraction of Py at 50% like 
in the periodic structure and 61.8% like in the quasiperiodic 
one)—confirm this suggestion, but they are noticeably overes-
timated (0.97 ns and 1.24 ns for the smaller and larger filling 
fractions, respectively) in relation to the lifetimes of the lowest 
(i.e. fundamental) mode in MC and MQ, respectively (figures 
2(a) and (b)). Thus, there is need to investigate this structur-
ally induced change of damping in a more systematic way 
with detailed analyses of the distribution of SW amplitude.

To relate the lifetime of the modes with the spatial distri-
bution of their profiles, we plot (in figures 2(c) and (d)) the 
CFs in the Py system: CFx and CFy, defined by equation (7) 
for the components mx and my of dynamical magnetization, 
respectively. The dependences of CFx (brown points) and 
CFy (orange points) on frequency are qualitatively the same, 
but differ in the values they reach—CFy is noticeably bigger 
than CFx. The difference between CFs for CFx and CFy results 

from the symmetry of the system. Due to differences in x- and 
y-components of dynamical dipolar fields, the comp onent my 
is strongly reduced in reference to the mx component (ellip-
ticity of precession is larger) in Co stripes, relatively to Py 
stripes.

We expect that modes of higher concentration in Py will 
be characterized by a longer lifetime than those concentrated 
in Co. For these modes the damping torque is low in both the 
Py and Co subsystems. A small damping torque in Py appears 
because of the low value of intrinsic damping (small α), while 
the reduced damping torque in Co results from the small 
amplitude of the SW precession (and low value of ×M Heff

—see equation (1)). Figures 2(c) and (d) present the depend-
ence of CF on frequency for periodic and quasiperiodic sys-
tems, respectively. Both the global change of the lifetime as a 
function of frequency and the local changes of this parameter 
within each band are clearly reflected in the dependence of the 
CF on frequency. This supports our explanation of nonlocal 
reduction of damping in Co/Py nanostructures, resulting from 
different distribution of the amplitude of SWs between Co and 
Py subsystems. It is worth noting that the relation between CF 
and lifetime is not linear, which results from a nonlinear rela-
tion between precession amplitude and damping torque. CF 
can also reflect some other peculiarities of mode profiles. All 
these effects can result in the lack of one-to-one correspond-
ence between the CF and the lifetime. For instance, the ranges 
of CFx for the second and the third magnonic bands overlap 
(see figure 2(d)) but their ranges of corresponding lifetimes are 
separated—it means that we can have two states of the same 
CFx, which differ in terms of lifetime. The other problem is 
some ambiguity in the definition of CF, which is related to the 
measure used in equation (2)—we choose the most intuitive 
formulation of CF—we have integrated the squared absolute 
value of |mx|2 (and not e.g. the absolute amplitude |mx|). This 
particular choice affects only quantitatively the dependence 
of CF on frequency and can be justified by the relation of 
experimental characteristics to the squared amplitude of SWs. 
Overall, the calculated CF explains the general change of life-
time dependent on frequency.

For further analysis of the impact of the shape of profiles 
on the lifetime of SWs, we plotted selected modes from quasi-
periodic (figure 3) and periodic sequences (figure 4). We pay 
attention to the location of the nodes and to the position of 
the areas of the SWs’ amplitude concentration. We start our 
discussion from the description of the lowest modes in the fre-
quency scale i.e. in the metamaterial regime. In this frequency 
range the modes vary in terms of the scale of the whole struc-
ture, being relatively smooth across the distances comparable 
to the sizes of the single elements composing the nanostruc-
ture. Thus, the lowest SW modes have very little oscillations 
and nodes. Their amplitude (in both Py and Co subsystems) 
goes rarely to zero and follow the long-scale oscillations char-
acteristic for the metamaterial regime (see modes 1, 2, 3 in 
figures 3 and 4). As a result of relatively high amplitude of 
SWs also in Co, the lifetimes of the lowest modes are short.

When we look into the details of the profiles of the lowest 
modes, we see that the amplitude in Co is slightly lowered in 
comparison to the amplitude in Py. However, this finding does 
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not undermine the previous conclusion about high damping of 
the lowest modes. The lowering of the SW amplitude in Co 
can be easily understood when we notice that the frequencies 
of these modes are below the FMR frequency of Co. It means 
that the SW amplitude will decay into the center of Co wires 
from the forced oscillations at the Py edges (only exponen-
tial decay is accepted below the FMR frequency). This slight 
lowering of the amplitude in the Co subsystem could suggest 
that the lowest modes will have a longer lifetime in com-
parison to the modes in a homogeneous system (formed by 
averaging of the material parameters, including the damping 
constant), where the amplitude changes smoothly. But, in fact, 
the opposite is true: the lifetime of fundamental mode for the 
nanostructure is slightly lower than for the average system. 
This finding demonstrates that the volume averaging of the 
damping constant is not a fully justified approach in magnetic 
composites, even at the long-wavelength limit. The lifetimes 
of higher modes, starting from the fundamental excitation, 
grow with frequency because of the increase of the number 
of nodes which are usually located in Co. This reduces the 
damping torque in Co and extends the lifetime (see e.g. mode 
20 in figure 3 and mode 28 in figure 4).

We will focus now on higher-frequency SWs (from higher 
bands) in the MC. In the second band (modes 31–56 in figure 4) 
all modes have one node in every Py wire. This reduces the 

averaged amplitude in the Py subsystem as compared to the 
excitations of the first band. As a result of increasing the 
contribution of SWs excited in Co, the lifetime for SWs in 
the second band will be shortened. Similar arguments can be 
used to explain the reduction of the lifetime in the third band 
(where two nodal lines in each Py wire are observed) in refer-
ence to the second one.

The scenario for changes of lifetime within the second 
band is similar to the first band: while in all Py wires one 
node is observed, successive modes have more and more Co 
wires with nodes; this gradually increases the lifetime. We 
can explain similarly the changes of mode profiles in the third 
band (modes 59–84), where two nodal lines in each Py wire 
appear. This led us to the same conclusion about the changes 
of lifetime within the third magnonic band as for the previous 
ones.

The presented mechanism seems to be systematic and can 
be used to explain the increase of the lifetime of the modes 
within the bands with increasing frequency and reduction 
of the lifetime of a higher band in reference to a lower one. 
However, this clear picture is not valid for high-frequency 
bands, where SWs start to oscillate spatially in Co. The har-
monic oscillations in Co stripes appear at higher frequencies, 
well above the FMR frequency for Co, due to the finite width 
of the wires. Changes of the spatial distribution of SWs’ ampl-
itudes are much more complex with increasing frequency and 
are difficult to describe in the frame of a simple mechanism. 
We will investigate them briefly for wires of larger widths in 
the last part of this section.

We will now discuss the relation between SWs’ mode 
profiles above the metamaterial regime frequencies in the 

Figure 3. The profiles of selected modes for the Fibonacci structure 
consisting of 55 wires of 91 nm width (see figure 2(a)). We plotted 
the amplitudes of the in-plane component of the dynamical 
component of magnetization |mx| versus distance along the whole 
width of the structure. The modes are presented on the background, 
where green and gray colors denote the areas of Co and Py wires, 
respectively.
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quasiperiodic structure (i.e. above the third mode in figure 3). 
There are two important structural differences in reference to 
a periodic sequence that are worth stressing. The first differ-
ence is that in the considered quasiperiodic structures there 
are Py wires both of single and of double width. The second 
difference is lack of periodic repetition of elements in the 
structure. Due to two different widths of wires the modes can 
concentrate in both kinds of Py wires. The lower modes (see 
e.g. modes 23, 34, 35 and 46 in figure  3) are concentrated 
mostly in wider Py wires, while higher modes start to be 
excited in the single Py wires (e.g. modes 49 and 84). Thus, 
the quantization of SWs within Py wires depends also on the 
width of wires. In single Py wires the increase of the number 
of nodes (or spatial oscillations) appears with larger differ-
ences of frequencies—e.g. the group of modes with one node 
(e.g. mode 49 shown in figure 3) and the group with two nodes 
in Py wires (e.g. mode 84) are more separated in the frequency 
domain than the group of modes concentrated in double wires 
(in double Py wires)—e.g. mode 23 in figure  3 originating 
from the group with one node in double Py wire and mode 35 
with two nodal points in double Py wire.

The lack of regular arrangement of elements (sets of wires) 
in the quasiperiodic structure means that every Py stripe can 

have a unique surrounding [17]. This strengths the localiza-
tion of SWs, due to very few (if any) equivalent locations for 
SW eigenmodes (see modes with numbers larger than 23 in 
figure  3). The small number of Py wires with a significant 
amplitude of modes, protects the distribution of the modes 
across the whole structure. It is worth noting that an eigen-
mode in the quasiperiodic structure can be formed by excita-
tion in a few Py wires only if they have a similar surrounding 
to the other stripes [17].

For the Fibonacci quasiperiodic structure it is not easy to 
analyze the frequency spectrum, because it is impossible to 
point out the allowed frequency bands. We can only find its 
counterpart by the complement of the complex, fractal set 
of magnonic gaps [17]. For the finite structure the magnonic 
gaps can be found as frequency ranges of the width much 
bigger than the average frequency interval between successive 
modes. However, this limits the detection of the fine magnonic 
gaps, therefore, in figures 2(a) and (c) we identified only the 
widest magnonic gaps in the spectrum.

In the case of MQs, the systematic discussion of the changes 
of mode profiles and their lifetimes is difficult to pursue in the 
manner presented for the MC. We selected for discussion only 
some modes at the edges of the largest magnonic gaps (modes 

Figure 5. (a) and (b) Lifetime of SW eigenmodes versus their frequencies for (a) Fibonacci structure—MQ and (b) periodic structure—
MC, consisting of 55 wires of 250 nm width. (c) and (d) The CF for the mx component (brown and violet points) and my component (orange 
and light blue points) of SW eigenmodes showing the strength of the excitation within the Py subsystem for (c) MQ and (d) MC. The grey 
areas mark the most pronounced frequency gaps. The green (grey) horizontal series of points show the lifetime of eigenmodes obtained for 
a solid Co (Py) layer of the same external thickness and width as considered for the MC and MQ structures. The dashed vertical green and 
grey lines mark the frequency of the first FMR mode obtained for the homogeneous Co and Py stripe, respectively. Dark blue, light blue 
and violet points, which can be found in the gaps, show the lifetime and CF of selected surface modes. Red, orange and brown points show 
the lifetime and CF of the rest of the modes (mostly bulk modes) found for the Fibonacci and periodic structures. The dashed horizontal 
lines mark the lifetime of the homogeneous stripe of averaged material parameters.
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20, 23, 34, 35, 46, 49, 63, 68 and 84 in figure 3). These modes 
differ significantly in terms of spatial distribution of SW 
amplitude, which results in noticeable differences in their life-
time. We found three main features of the profiles of modes in 
the quasiperiodic system which affect clearly the lifetime of 
those modes. These are: (i) the ratio of the number of double 
to single Py wires in which high amplitude of the SW mode is 
concentrated, (ii) the number of nodes in Co wires (especially 
in those located next to the Py wires, in which the amplitude 
concentrates), and (iii) the number of nodes in Py wires. The 
best composition of the mentioned conditions, which will give 
us the guidance to pick up the profile of the mode character-
ized by a long lifetime, is: the mode should be concentrated 
in the double Py wires with a low number of nodes inside of 
these wires and should decay rapidly in the surrounding Co 
wires, which can be ensured by nodes being located in the 
Co. If we compare e.g. modes 34 and 84, we will be able to 
explain the differences in the lifetimes of those modes (short 
lifetime for mode 84 and long lifetime for mode 34) in terms 
of the discussed features.

The considered systems are finite sequences of elements 
(wires) ordered in periodic or quasiperiodic manner. For such 
structures both the bulk states (forming the frequency bands) 
and surface states (appearing in frequency gaps) can exist. 
The frequency gaps are the frequency ranges forbidden for the 

bulk modes. However, surface states, which are localized on 
the external wires (and exponentially decaying inside of the 
structure), can exist in these frequency ranges. For the struc-
tures under consideration, the external stripes are made of Py 
(for both periodic and quasiperiodic structures), therefore, 
most of the amplitude of the surface modes is concentrated 
in the material of low damping (Py). This explains the rela-
tively long lifetime of these modes (figures 2(a) and (b)). It 
is worth noting that, due to the significant width of the struc-
ture (and big separation between surfaces), two surface modes 
appearing in one gap are practically degenerate and their life-
times are practically the same, although in the quasicrystal the 
y-axis of symmetry is not present.

We are going to discuss now the results obtained for the 
larger structures i.e. for the systems made of wider wires. The 
dependences of the lifetime and CF for the structures built from 
wires of 250 nm width were set together in figure 5. We chose 
to use the style of points, lines and the ranges of frequency and 
lifetime the same as in figure 2 to make the comparison of the 
plots presented in figures 2 and 5 easier. Comparing obtained 
results for the structures made of narrower wires (figure 2) to 
the results for wider wires (figure 5), it is easy to notice that 
the lifetime of eigenmodes changes within similar limits in the 
same frequency ranges. We can make the same observation 
for dependences of CF on frequency, which is also presented 
in figures 2 and 5.

The most distinctive difference between the spectra for 
the systems presented in figures 2 and 5 is a difference in the 
number of magnonic gaps and bands. It is because of the dif-
ferences of the widths of wires. For the periodic system the 
width of wires (and as a result the period) determines the size 

Figure 6. The profiles of the selected modes for the Fibonacci 
structure consisting of 55 wires of 250 nm width (see figure 5(a)). 
We plotted the amplitudes of the in-plane component of the 
dynamical magnetization, mx, versus distance along the whole 
width of the structure. Modes are presented on the background, 
where green and gray colors denote the areas of Co and Py wires, 
respectively.
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of the first Brillouin zone and location of frequency gaps. The 
system of wider wires is characterized by a finer frequency 
spectrum. This rule can be also generalized for quasiperi-
odic systems. In our study we keep the total number of wires 
within the structure constant (i.e. equal to 55), therefore, the 
number of modes per one band is the same for the structures 
with narrower and wider wires.

The general trend of the dependence of lifetime and CF 
versus frequency is more or less the same for each of the 
considered structures: the envelope goes at first up, reaches 
a maximum at around 18 GHz and then it starts to fall down. 
This dependence is more dynamic (i.e. has steeper slopes) for 
structures built from wires of 250 nm width. In the consid-
ered range of frequencies we obtain for the periodic sequence 
of narrower wires (figures 2(b) and (d)) 3 bands and 3 gaps, 
and for the periodic sequence of wider wires (figures 5(b) 
and (d)) 8 bands and 8 gaps. For quasiperiodic systems we 
marked only the widest gaps but the increase of the number 
(or density in the frequency domain) of magnonic gaps is evi-
dent for the structure with wider wires (figures 5(a) and (c)). 
We noticed that the modes in the structures constructed from 
wider wires, are on average less damped (have got a slightly 
longer lifetime) than the modes for systems built with nar-
rower wires.

The profiles of modes for structures with wider wires 
are presented in figure  6 (for quasiperiodic structure) and 

in figure  7 (for periodic structure). In general, the profiles 
of modes for the periodic and quasiperiodic systems look 
quite similar to those presented in figures  3 and 4. The 
lowest modes (i.e. the modes in the metamaterial regime) 
look practically the same as their counterparts in figures 3 
and 4. Some differences in the shape of the corresponding 
modes from the structures differing in the width of wires 
can be attributed to different frequencies and different rela-
tions between dipolar and exchange interactions—compare 
the last modes in the first band for periodic sequences of 
narrower wires (mode 28 in figure 4) and wider wires (mode 
26 in figure 7).

The important difference between figures 2 and 5 for the 
systems with narrow and wide wires, respectively, is the pres-
ence, in the later system, of the band of modes which are 
almost entirely concentrated in the Co wires. For the periodic 
(quasiperiodic) sequence we observe a band of modes nos. 
169–195 (210–225), which are highly damped and character-
ized by lifetimes close to the lifetime of the homogeneous film 
of Co—see figures 5(a) and (b). The selected profiles are pre-
sented in figures 6 and 7.

For each of the considered structures a similar depend-
ence of the lifetime and CF on frequency within the magnonic 
bands can be found: the modes at the bottom of the band are 
the most damped and then their damping is gradually reduced 
with the increase of the frequency. The only exceptions to this 

Figure 8. The selected modes for the Fibonacci (a) and (c) and periodic (b) and (d) structures constructed from wires of two different 
widths: 91 nm (a) and (b) and 250 nm (c) and (d). The distance shows the width of the investigated structures. The numbers of selected 
modes are placed on the left side of each subfigure. By the red circles are marked the nodes in cobalt wires; the red crosses denote the 
cobalt wires in which the amplitude of the mode does not fall to zero (has got nonzero value). The capital ‘D’ and ‘S’ letters mark the 
double and the single wires of Py in Fibonacci structures.
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rule are the bands of modes concentrated in Co, where the 
lifetime of modes is reduced with increasing frequency.

All considered structures are terminated with Py stripes. 
Due to the low damping of Py, the surface modes (mostly 
concentrated in the outermost Py stripes) are characterized by 
relatively long lifetimes.

We also inspected carefully the bottoms of magnonic 
bands to check how SWs penetrate Co wires, which is the 
main source of the increase of damping for modes concen-
trated mostly in Py. We found that for some modes (e.g. mode 
29 for the periodic sequence in figure  7) the amplitude of 
SWs does not decay in the center of Co wires and, therefore, 
these modes can be considered as modes supporting the SW 
dynamics in both the Py and Co subsystems.

4. Conclusions

We have showed that SW lifetimes in 1D planar MC and 
MQ systems differ substantially from damped SWs in planar 
homogeneous systems. We have investigated nanostructures 
composed of the two materials: the one characterized by 
lower saturation magnetization and lower damping and the 
other one with higher saturation magnetization and higher 
damping. For such systems the lifetime of eigenmodes can 
be extended over the lifetime of modes in a homogeneous 
slab, made of artificial material, characterized by para-
meters, being the volume average of parameters for Co and 
Py. The frequency dependence of lifetime for the nano-
structure is not constant, as it is for a homogeneous layer 
in a Damon–Eshbach configuration [25], but shows specific 
dependence, having common features for periodic and quasi-
periodic bandgap materials, and for the two different aspect 
ratios of the xy-cross-section of Co and Py wires. For the 
lowest modes the lifetime is slightly below the value of this 
parameter for the homogeneous layer of averaged material 
parameters, then increases, and after reaching the maximum, 
decays gradually. These changes take place in the frequency 
range corresp onding to the lowest magnonic bands, where 
the modes are concentrated mostly in the low-damped mat-
erial—Py. For higher frequencies we start to observe (for the 
structures with 250 nm wide wires) the bands of the modes 
which are concentrated in Co and characterized by very short 
lifetimes. Those bands are out of the earlier-described trend.

Our main finding is the description of the relation between 
spatial distribution of amplitude of the SW eigenmodes and 
their lifetimes. We were able to correlate the concentration of 
the mode in a Py (or Co) subsystem (expressed by an intro-
duced measure of this concentration) to its lifetime. We also 
found some specific features of the profiles of modes which 
are useful in qualitative determination of the lifetime of a 
particular mode. We summarized this analysis in figure 8. In 
the low frequency range, where the modes are concentrated 
mostly in Py, the one important factor is the number of nodes 
of the profile located in Co wires. For instance, modes 56, 34 
and 26, presented in figures 8(b)–(d), respectively, are char-
acterized by a longer lifetime due to reduction of SW preces-
sion in Co, manifested by a large number of nodes located 

in Co. For the quasiperiodic sequence, the type of Py wires 
(single or double ones) in which the SW is concentrated plays 
an important role. Modes concentrated in the double Py wires 
(e.g. mode 46 in figure 8(a)) have got longer lifetimes than 
those concentrated in the single Py wires (e.g. mode 49 in 
figure 8(a)). This relation between the spatial profiles of SW 
modes and lifetime allowed us to explain the main trend in 
dependence of lifetime on frequency and to deduce some 
detailed features of this dependence: the monotonic growth 
of the lifetime within an individual band (for periodic sys-
tems) or the jumps of lifetime across the gaps (for periodic 
and quasi periodic systems).

We showed that the damping in magnonic nanostructures 
can be molded by introducing periodic as well as quasip-
eriodic modulation. The periodic and quasiperiodic geom-
etry induces additional dependence of damping on frequency 
absent in homogeneous planar systems, which can be tuned 
by changing the structural parameters. This property opens 
the possibility to design magnonic devices [27–30], for which 
the reduced damping will be gained for specific SW modes or 
in selected frequency ranges.
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