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I. INTRODUCTION

Spin waves (SWs), quantized as magnons, are coherent disturbances of magnetization

in a magnetic medium, and can propagate in the form of waves over a distance of up to a few

centimeters. Their frequency spans the range from hundreds of MHz to a few THz, with the

respective wavelengths ranging from micrometers to nanometers, depending on the magnetic

properties of the material, the experimental geometry and the magnitude of the applied

magnetic field. Thus, within these time and space limits SWs can be used for transferring

energy or transmitting and processing information. Moreover, the magnetization dynamics

can be influenced by many external factors, such as magnetic field, electric current, spin

current, electromagnetic field, elastic waves, strain, voltage or temperature gradient, all of

which can be used for exciting SWs or controlling their propagation. Also, physical quantities

related to these factors can be studied with the use of SWs. Thus, various technological

applications can benefit from using SWs; this justifies the effort taken in recent years to

study the SW dynamics and to design prototypes of spin wave-based devices or elements to

complement existing technologies.

Material structuring is one of the major factors used for controlling the propagation of

waves with short wavelengths in solids, especially when integration and miniaturization are

required. The use of periodic structuring for controlling the wave dynamics has increased

significantly since the discovery of photonic crystals in 1987,1,2 though the effect of periodic

modulation on the wave transmission was studied already at the end of 19th century. The

effect of one-dimensional periodicity on vibration waves was considered at that time,3 and a

theory of differential equations with coefficients being periodic functions of an independent

variable was developed by Floquet and Hill.4,5 However, the extension of this theory to three

dimensions and its application to electronic waves remain a vital step in solid state physics.

A theory of electrons in a crystal lattice was developed in the 1920s, and the most important

theorem for the description of waves in periodic media – Bloch’s theorem – was established.6

It is noteworthy that F. Bloch was also the first to develop a theory of spin waves.7,8 On

these theoretical grounds the concept of electronic passbands and stopbands (band gaps)

was formulated to describe the conduction properties of semiconductors; these very prop-

erties provided a basis for the development of modern microelectronics. The usefulness of

periodic structuring was verified in the following years, leading to the development of var-
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ious kinds of resonators, filters, splitters and other devices for electromagnetic, mechanical

or transmission lines.9–11 Since 1987 periodicity has been extensively used for molding the

flow of electromagnetic waves in the range from microwave to optical wavelengths, which led

to the discovery of new materials with properties unheard of in nature. Concepts developed

in photonics were transferred to other types of excitations, such as phonons, plasmons and

magnons.

Already in the late 1970s periodicity was used for controlling SW excitations in ferro-

magnetic materials.12,13 The transmission of magnetostatic waves was molded by periodic

distribution of the saturation magnetization, realized by ion implantation,14 a regular lattice

of etched grooves in a magnetic dielectric, periodic modulation by metallic stripes or dots on

top of a ferromagnetic film,15,16 or periodic perturbation of the effective magnetic field. Due

to limitations in fabrication and technology the investigations were limited to relatively large

structures, in which the dipolar interaction prevailed over the exchange interaction. The dis-

covery of photonic crystals renewed the interest in magnetic periodic structures, inspiring

many new ideas, providing abundant new physics, and pushing magnetization dynamics

studies in unexplored directions. The concept of magnonic crystals (MCs) was proposed

as a SW counterpart of photonic crystals.17–20 Thus, MCs can be regarded as magnetic ma-

terials with periodic distribution of the constituent materials or periodic modulation of some

magnetic parameters (e.g. saturation magnetization or magnetocrystalline anisotropy), or

other parameters relevant to the propagation of SWs, such as external magnetic field, film

thickness, stress or a surrounding of the homogeneous ferromagnetic film.

In any periodic medium the eigensolutions of the wave equation in the linear regime ful-

fill Bloch’s theorem and, regardless of the type of excitation, form a band structure in the

frequency–wave vector space. Thus, the qualitative understanding of the formation of the

magnonic (i.e., spin-wave) band structure can be based on classical textbooks of solid state

physics and the solution of the scalar Schrödinger equation in a periodic potential21 or the

wave equation for the propagation of electromagnetic waves.22 Nevertheless, the details of

the band structure can only be derived from numerical calculations. Usually the magnonic

band structure is studied in terms of its sensitivity to the geometry of the MC, material

parameters or external fields. Moreover, SWs have a complex dispersion relation even in

homogeneous thin films. The dispersion depends on the direction and magnitude of the wave

vector, the proportion of the short-range exchange interaction to the long-range dipolar in-
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teraction, the external shape of the sample, the magnitude of the applied static magnetic

field, its orientation with respect to the direction of propagation, and the magnetocrystalline

anisotropy. This means that the SW band structure of MCs will be influenced by many ad-

ditional factors apart from those they have in common with other types of artificial crystals.

This makes MCs an intriguing topic for scientific studies and the main subject of research

in the field of magnonics.23

II. SPIN WAVES IN HOMOGENEOUS MEDIA

Basic in magnonics, the Landau-Lifshitz (LL) equation describes the time (t) and position

(r) dependence of the magnetization vector M(r, t):

dM(r, t)

dt
= γµ0 [M(r, t) × Heff(r, t)]

+
α

MS

[
M(r, t) ×

dM(r, t)

dt

]
, (1)

where γ and µ0 are the gyromagnetic ratio and the permeability of vacuum, respectively

(here we assume γ = 176 rad GHz/T and µ0 = 4π × 10−7 m T/A); MS is the saturation

magnetization, and Heff(r, t) denotes the effective magnetic field. The last term in Eq. (1)

describes energy dissipation, with α being a dimensionless damping parameter. The right

side of the equation can be supplemented with additional terms related to other factors,

e.g., spin-torque currents.

A small disturbances of magnetization from its equilibrium orientation, usually can be

considered in the linear approximation; this means that in a ferromagnetic material satu-

rated along the z-axis the magnetization vector can be split into static and dynamic parts,

M(r, t) =Mz ẑ+m(r, t), and all terms nonlinear with respect to the dynamic magnetization

m(r, t) can be neglected in the equation of motion. Since |m(r, t)| ≪ Mz, we can also assume

Mz ≈ MS, where MS is the saturation magnetization. Here we will only consider monochro-

matic SWs; thus, for an angular frequency ω we can write m(r, t) = m(r) exp(iωt). Under

these assumptions the dynamics of the magnetization vector m(r) with negligible damping

is described by the stationary LL equation:

iωm(r) = γµ0 [MSẑ +m(r)] × Heff(r). (2)

In general the effective magnetic field can include a variety of components, depending

on the material, structure and experimental conditions. Besides the exchange field, the
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demagnetization field, the magnetocrystalline field or magnetostrictive components, it can

also include components external to the ferromagnetic medium: external bias magnetic field

or radio-frequency field. In one of relatively simple cases the considered effective magnetic

field consists of the external magnetic field H0, the dynamic magnetic field hms created by

the magnetization in precession, and the exchange field hex:

Heff(r) = H0ẑ + hms(r) + hex(r). (3)

The exchange field is related to the short-range interaction (usually limited to the nearest

or next-nearest neighbors in the atomic crystal lattice), the energy of which is described by

the Heisenberg Hamiltonian. However, in the linear approximation the exchange field can

be defined as a differential operator of m:

hex(r) = l2ex∇
2m(r), (4)

where

lex ≡

√
2A

µ0M2
S

(5)

is the exchange length and A is the exchange constant expressed in the units of J/m.

The dispersion relation of SWs in a homogeneous medium and Bloch’s theorem are enough

to elucidate the basic properties of the magnonic band structure. Even this, however, is not a

straightforward task, since the SW dispersion relation depends on the shape of the magnetic

body and is in general anisotropic. Here we will only discuss two cases: i) an isotropic

homogenous ferromagnetic body, and ii) a homogeneous ferromagnetic thin film saturated

with an in-plane or out-of-plane external magnetic field. The obtained information will

provide a basis for the description of the SW dynamics in three-dimensional (3D) MCs and

in MCs based on thin films periodic in one or two dimensions.

In a homogeneous body, shown in Fig. 1(a), the internal magnetic field is homogeneous,

if we neglect the external shape effects (this theoretical model can be extended also to a

body of ellipsoidal shape, but in that case the effective magnetic field from Eq. (3) needs

to be supplemented with the homogeneous demagnetizing field).24,25 Taking into account of

Eq. (3), from Eq. (2) we can define the susceptibility tensor χ̂ [m(r) = χ̂hms(r)] and the
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FIG. 1: Geometry used in the calculation of the spin wave (SW) dispersion relation in (a) a

homogeneous ferromagnetic body (which can be of ellipsoidal shape, but with dimensions much

larger than the SW wavelength), and (b) a thin film saturated by an external magnetic field H0.

permeability tensor µ̂ ≡ 1̂ + χ̂ (where 1̂ is a unity matrix), the latter having the form:

µ̂r =




µxx iµxy 0

−iµyx µyy 0

0 0 1


 , (6)

where formally we write:

µxx = 1 +
γ2µ2

0MS(H0 −MSl
2
ex∇

2)

[γµ0(H0 −MSl2ex∇
2)]2 − ω2

, (7)

µxy =
γµ0MSω

[γµ0(H0 −MSl2ex∇
2)]2 − ω2

, (8)

µyx = µxy, µyy = µxx. (9)

The dynamic magnetic field is described by full Maxwell equations. However, in case of

SWs of micrometer or shorter wavelength, considered for most applications in magnonics,

the wavelength is much smaller than that of electromagnetic waves of the same frequency

(e.g., 3 GHz electromagnetic radiation has a wavelength of 10 cm in air). This allows to use

the magnetostatic approximation, in which Maxwell’s equations reduce to:26

∇ × hms(r) = 0,

∇ · [µ̂ · hms(r)] = 0.
(10)

If we assume hms = −∇ψ, the first equation will become an identity for any analytical

function ψ, and the scalar magnetostatic potential ψ will fulfill the Walker equation obtained

directly from the second Eq. (10):27

∇ · (µ̂ · ∇ψ) = 0. (11)
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FIG. 2: The dispersion relation of SWs in a homogeneous material; dashed and solid lines refer to

SW propagation parallel (θ = 0) or perpendicular (θ = π/2), respectively, to the external magnetic

field. The dark area between these dispersions represents a SW manifold. The parameters of Py

(reported in Table I) and 0.1 T external magnetic field were assumed in the calculations. The

wavenumber axis has a logarithmic scale.

Assuming a plane-wave solution with a wave vector k, ψ ∝ exp(ik·r), and a SW propagation

angle θ with respect of the direction of the bias magnetic field (which implies k2x + k2y =

k2 sin2 θ and k2z = k2 cos2 θ, Fig. 1(a)), the solution of Eq. (11) with the permeability tensor

Eq. (6) is:26,28

ω = γµ0

[
(H0 +MSl

2
exk

2)

× (H0 +MSl
2
exk

2 +MS sin
2 θ)

]1/2
. (12)

This dependence of the SW frequency (f = ω/2π) on the wave vector magnitude (the

wavenumber k) is plotted in Fig. 2 for homogeneously magnetized permalloy in a magnetic

field µ0H0 = 0.1 T. The two curves in the plot refer to two extreme propagation angles,

for which the direction of propagation is parallel (θ = 0) or perpendicular (θ = π/2) to the

direction of the saturation magnetization. The area between these two curves represents a

manifold of SWs propagating at any angle.

As mentioned before, the propagation of SWs is determined by two types of interaction,

the dipole and exchange interactions, which influence the magnetization dynamics in differ-

ent wavenumber ranges. For small values of k the SW frequency does not depend on k, which

is a characteristic feature of the magnetostatic waves in a homogeneous unbounded medium.

For large values of k (k & 2 × 107 rad m−1), where the dispersion relation is parabolic, the

exchange interaction prevails over the dipole interaction. However, in the approach based

on the LL equation (1) used in this paper, k has also an upper limit, as the LL equation
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describes the SW dynamics with m being a continuous functions of the position and uses

the approximate formula (4) for the exchange field. Thus, the applicability of this approach

is limited to SWs with wavelengths much larger than the spacing between ferromagnetic

atoms in the crystal lattice (k ≪ 1 × 1010 rad m−1).

This means that the relative strength of these two types of interaction will change with

the wavelength of the spin waves (λ = 2π/k). The magnetization dynamics will be different

in the two regimes, in which either the dipole or exchange interaction dominates; therefore,

the SW spectrum will not follow the simple scaling rule that applies in photonics.22

An analytical theory of SWs in ferromagnetic thin films was developed by Kalinikos and

Slavin in Ref. [29]. Following their approach, we will consider a magnetically saturated

homogeneous ferromagnetic thin film of a thickness d, with the static magnetization vector

M parallel to the static component Heff,0 of the effective magnetic field (Fig. 1(b)).114 A

spin wave with an angular frequency ω and a wave vector k propagates in the plane of the

film at an angle ϕ with respect to the direction of the vector Heff,0 projected onto the film

plane. The vectors Heff,0 and M form an angle ϑ with the normal to the film plane. In the

linear approximation the dispersion relation takes the form:29

ω = γµ0

[
(Heff,0 +MSl

2
exk

2)

× (Heff,0 +MSl
2
exk

2 +MSF (ϕ, ϑ))
]1/2

. (13)

The function F (ϕ, ϑ) is defined as:

F (ϕ, ϑ) = P + sin2 ϑ

[
1 − P (1 + cos2 ϕ) +MS

P (1 − P ) sin2 ϕ

(H0 +MSl2ex)

]
, (14)

where

P = 1 −
1 − e−kd

kd
. (15)

The contribution of the dipolar interaction to the spin-wave dynamics is expressed by

F (ϕ, ϑ), defined in Eq. (14), and the effect of the exchange interaction is represented in

Eq. (13) by the terms proportional to k2. In the case considered here the static component

of the effective magnetic field includes the external static magnetic field H0 and the static

demagnetizing field. For the two configurations discussed in this paper, i.e., for ϑ = 0 and

ϑ = 90◦, the static component of the effective magnetic field is Heff,0 = H0 − MS, and

Heff,0 = H0, respectively. The equation (13) was obtained for the unpinned magnetization
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FIG. 3: Contours of constant frequency (iso-frequency plots) of SWs in a 20 nm thick ferromagnetic

film. (a), (b), (c) Iso-frequency plots in Co, Py and yttrium iron garnet (YIG) films, respectively,

with in-plane bias magnetic field H0 = 0.1 T. (e) Iso-frequency plots in a Py thin film with a 1.1

T out-of-plane bias magnetic field. (f) Spin-wave dispersion along one selected in-plane direction

in Co, Py and YIG films with an out-of-plane bias magnetic field.

dynamics on the surfaces of the film and under the assumption that the excitation amplitude

is uniform across the film thickness. These two assumptions are fulfilled to a large extent

in many recent experimental studies of thin-film MCs.30–36 As compared to the parabolic

and linear dispersion relations of electronic and electromagnetic waves, respectively, in ho-

mogeneous media, the SW dispersion relation f(k) described by Eq. (13) has a complex

and nonmonotonic dependence on the in-plane wave vector. The SW frequency depends

on (i) the wavenumber k, (ii) the magnitude of the external magnetic field H0, and (iii) its

orientation with respect to k and the film plane (angles ϕ and ϑ); apart from these, (iv)

the magnetocrystalline anisotropy and (v) the magnetization configuration will add further

important parameters in the f(k) dependence.25,26,29,37,38

Three geometries tend to be studied: the Damon-Eshbach geometry (DE), the backward

volume magnetostatic wave geometry (BVMW), and the forward volume magnetostatic wave

geometry (FVMW).26 In the DE and BVMW geometries the magnetic field H0 is oriented
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in the plane of the film (ϑ = 90◦) and the propagation of SWs is perpendicular (ϕ = 90◦)

and parallel (ϕ = 0), respectively, to the direction of this field. In Fig. 3(a)-(c) these two

propagation directions are the y and z directions, respectively. Since the dispersion relation

depends on the angle ϕ, the dispersion is anisotropic. In the FVMW geometry the static

component Heff,0 of the effective magnetic field is perpendicular to the plane of the film

(ϑ = 0), the ϕ dependence drops out of the dispersion relation (13), and the propagation of

SWs in the plane of the film is isotropic (see Fig. 3(e)).

Figure 3 shows the dispersion relation of SWs in a thin film with an in-plane magnetization

over the ky, kz plane in the range ky, kz ∈ (−1.57; 1.57)×108 rad m−1 for 20 nm thick films of

(a) cobalt (Co), (b) permalloy (Py), and (c) YIG (yttrium iron garnet, Y3Fe5O12). The wave

vector range in which the exchange interaction prevails over the dipolar interaction can be

roughly determined from these diagrams, considering that exchange-dominated SWs have a

parabolic and isotropic dispersion relation. In YIG the exchange interaction is dominant in

most of the considered range (for f > 10 GHz, Fig. 3(c)), while in Co and Py the anisotropic

dispersion indicates major contribution of the dipolar interaction even at k ≈ 108 rad m−1

and f ≈ 40 GHz, where the iso-frequency contours are elliptical. For small ky the dispersion

relation f(ky) is monotonic and linear with a positive slope, which is characteristic of the

DE geometry (Fig. 3(c)). However, the f(kz) dependence is nonmonotonic; starting from

kz = 0 the frequency decreases with increasing wavenumber, attains a minimum and then

increases with kz. It is usually assumed that above the k value corresponding to the minimum

the exchange interaction prevails over the magnetostatic interaction. Such a nonmonotonic

dispersion relation is characteristic of the BVMW geometry.

In the FVMW geometry the static component Heff,0 of the magnetic field is perpen-

dicular to the film plane and the dispersion relation is isotropic regardless of the mate-

rial. Nevertheless, exchange and dipole-exchange regimes can still be distinguished: the

exchange-dominated part has a parabolic dispersion (Fig. 3(e)), whereas in the dipolar and

dipole-exchange parts the k dependence of f is linear (Fig. 3(f)).
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III. CALCULATIONS OF THE MAGNONIC BAND STRUCTURE

A. Bloch’s theorem

Solutions of the LL equation in MC shall fulfill Bloch’s theorem, which asserts that a

solution of a differential equation with periodic coefficients can be represented as a product

of a plane-wave envelope and a periodic function of the position vector. The properties

of spin waves in MCs will have the same fundamental properties obtained from Bloch’s

theorem, which are common also with other excitations in periodic media, i.e., electrons

in crystal lattice, electromagnetic waves in photonic crystals and elastic waves in phononic

crystals.

According with this theorem dynamical components of the magnetization vector in LL

equation (2) [m(r) = mx(r) +my(r)] in MC, where all coefficients are periodic function of

the position vector (with the lattice vector a) can be written as a Bloch waves:

mxi,k(r) = m̆xi,k(r)e
ik·r, (16)

where xi stands for x or y, here. m̆xi,k denotes the periodic part of the Bloch function for

any k:

m̆xi,k(r) = m̆xi,k(r+ a).

The quantity k introduced in Eq. (16) is a wave vector of the plane wave envelope (the

Bloch wave vector), which has same dimensionality as the spatial periodicity. It is introduced

also as an index, mk, to enumerate solutions. However, k could not be directly related to the

momentum, as opposed to a SW wave vector in homogeneous media, because the periodic

part of the Bloch function m̆xi,k(r), by itself, can have Fourier decomposition with any

spectra of the wavelengths.21 Thus, the k vector is called quasi-wave vector and it can be

associated with the crystal momentum, rather than with SW momentum (only when there

is no periodic change of any type in the structure, the crystal momentum is strictly equal to

the SW momentum). The crystal momentum enters conservation law that governs elastic

and inelastic scattering processes in the crystal. A photon (or neutron) with wave vector q

which absorbs (excites) the SW changes the wavenumber according with the selection rule

governed by the reciprocal lattice.

Bloch’s theorem implies important properties, which are general and independent on the
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particular solution. First,

mk(r+ a) = m̆k(r+ a)eik·reik·a = mk(r)e
ik·a, (17)

i.e., the spatial distribution of the dynamical magnetization vector, when shifted by the

lattice vector, is modulated only by the phase factor eik·a.115

-2 -1 0 1 2

12

16

F
re

q
u

e
n

c
y
 [

G
H

z
]

Wave vector [2 / ]p a

G1

+G1-G1

G2-G2 -G1
1BZ

FIG. 4: Magnonic band structure in Py film of 20 nm thickness in the empty lattice model calcu-

lated with the plane wave method (PWM). The SW propagation is perpendicular to the in-plane

magnetic field 0.1 T. The green circles show the dispersion of SW calculated from Eq. (13). The

red (blue) dotted lines mark the dispersion translated by reciprocal lattice vector G2 = 4π/a to

the left (right). The shaded area points at the first Brillouin zone (1BZ).

From the Bloch’s theorem Eq. (16) it also arises, that if mk is a solution of the LL

equation, then

mk+G(r) = m̆k+G(r)e
i(k+G)·r (18)

is also a solution and identical with mk(r), where G is an arbitrary reciprocal lattice

vector.116 One of the most important consequences of Eq. (18) is, that solution mk(r) is

associated with specific frequency ω(k). Since mk(r) = mk+G(r), the dispersion relation in

the wave vector space is also periodic:

ω(k) = ω(k+G). (19)

In Fig. 4 the dispersion curves of SWs in Py film for the DE configuration, which starts at

G0 = 0, G1 = π/a, −G1, G2 = 2π/a and −G2 are shown. It means, that all possible values
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of ω are already included in the range of k ∈ (−π/a; π/a). This is a back-folding (translation

by the reciprocal lattice vector) of the dispersion relation into the first Brillouin zone (BZ).

In the first BZ the dispersion relation is a multivalued function forming frequency bands,

which formally comes from larger k. Every frequency band and associated solution shall be

indexed with integer n. However, for the simplicity we omit the band number mk ≡ mk,n.

It is sufficient in the theoretical investigations to consider the first BZ only.

The MC with desired spectrum can be obtained by appropriate adjustment of the struc-

ture and materials in the fabrication process and also in the later stage by the change of

the magnetization configuration or modulation introduced by the external magnetic field.

Similarly to the dispersion in homogeneous ferromagnetic thin films, the dispersion relation

in MCs will depend on the film thickness, the magnitude of the magnetic field, and its di-

rection. However, for a given material and film thickness, the lattice constant a of the MC

determines whether the boundary of the first BZ (e.g., k = π/a in a 1D MC or a 2D MC

based on a square lattice with a lattice constant a) will be in the magnetostatic or exchange-

dominated regime. Thus, for relatively large and medium lattice constants the BZ boundary

(and back-folding) will take place in the magnetostatic regime of ω(k). For small values of a

the boundary of the first BZ is in the exchange regime. The dispersion relation in thin films

is anisotropic and in 2D MC the folding effect will make band structure more complicated.

The formation of the band structure in these crystals will be described in Sec. IVA2.

B. Plane wave method

The plane wave method (PWM) is well suited to solve the wave equation in a pe-

riodic media, which fully exploits the Bloch theorem. It has been successfully imple-

mented in calculations of photonic and phononic band structures in photonic and phononic

crystals,22 respectively, as well as electronic band structures in crystals and semiconduc-

tor heterostructures.21,39–41 We applied this method to calculate magnonic band structure

in MCs. However, before presentation of the PWM for SW’s calculations, we will derive

formulas for two main components of the effective magnetic field from Eq. (3) in piecewise

constant, periodic magnetic structures, i.e., in MCs. These are the exchange and magneto-

static fields, required in PWM calculations.
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1. Exchange field in magnonic crystals

The exchange field defined in Eq. (4) in linear approximation for homogeneous ferromag-

netic film needs modification. We limit consideration of the exchange field to MCs with

collinear and piecewise constant static magnetization distribution.

The microscopic source of the exchange interaction is the quantum mechanical Pauli

exclusion principle for electrostatically interacting electrons with spins. This interaction

between two localized spins Sl and Sm is effectively described by the dot product of these

spins, Sl · Sm. Thus, the interaction of the selected spin on site l with the lattice of spins is

described by the Heisenberg Hamiltonian:

Hl = −
∑

m∈NN

Jl,mSl · Sm, (20)

where the strength of the exchange interaction is given by the exchange integral Jl,m. The

summation in Eq. (20) is limited to the nearest neighbors (NN) spins of the l-th spin only.

The unit directional vector of the spin, αl, can be used to relate spins on discrete lattice to

the magnetization being a continuous function of the position vector:

αl =
Sl

|Sl|
=

M(rl)

|M(rl)|
, (21)

where M(r) = NSµBgSl (NS is the number of spins in the unit cell volume, µB is Bohr

magneton and g is g-factor). In the limit of small deviations of the neighboring spins, the

αm can be expanded into Taylor series around orientation of αl. Limiting this expansion to

the quadratic terms and substitution to Eq. (20) gives us the expression for the exchange

energy density:42,43

ǫex = λwM
2 + A

3∑

i=1

(
∂α

∂xi

)2

, (22)

where xi enumerates Cartesian components x, y and z. We assumed here, that exchange

integrals between any neighboring spins are the same, Ji,j ≡ J , and in case of considered

here ferromagnetic materials it has positive sign. The expression λwM
2 has meaning of the

Weiss field. The material parameters λw and A are linked to the microscopic parameters by

the relations:

λw =
−2ZJ

NSµ2
Bg

2
, A =

2JnlS
2

a
, (23)
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where nl = 1, 2, or 4 for sc, bcc, or fcc lattice, respectively and Z is a number of NNs (6, 8

and 12, for sc, bcc and fcc, respectively). The integration of the energy density ǫex over the

volume of the magnetic material gives the exchange energy:

Eex =

∫

V

ǫexdV. (24)

To find the exchange field entering LL equation (2) we have to calculate the functional

derivative of Eex with respect to the magnetization vector:37

Hex = −
1

µ0

δEex

δM
. (25)

The following formula is derived:

Hex = ∇l2ex∇m, (26)

where lex is exchange length defined in Eq. (5). This formula is derived in linear approxima-

tion, adequate for calculation of the magnonic band structure. It reduces to the Eq. (4) in

case of a homogeneous material. Although the exchange field was derived from the Heisen-

berg model, which assumes localized spins on the discrete lattice, it describes also very well

the magnetization dynamics in ferromagnetic metals and dielectrics. The important issue is

contribution of interfaces between different materials. The boundary condition problem was

discussed in Ref. [44], where ambiguity in the derivation of the formula for exchange field

was discussed. However, for bi-component magnonic crystals composed of Py and Co the

difference between proposed formulations of the exchange field is minor, due to the similar

values of the exchange length. Nevertheless, the general formulation of the exchange field

in inhomogeneous magnetic materials still needs to be developed, especially having in mind

the various possible contributions affecting spin wave dynamics at the interfaces.45

2. Formulation of the eigenproblem

With exchange field defined in inhomogeneous ferromagnetic material [Eq. (26)] we can

write explicitly LL equation (1). If we assume that the magnetization saturation, although

space dependent, is everywhere along z axis, the linearized LL equation takes the following
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form:

i
ω

γµ0

mx(r) = −MS(r)[∇ · lex(r)∇]my(r)

+ my(r) [H0 +Hms(r)] −MS(r)h
ms
y (r), (27)

i
ω

γµ0

my(r) =MS(r)[∇ · lex(r)∇]mx(r)

− mx(r) [H0 +Hms(r)] +MS(r)h
ms
x (r). (28)

We have assumed here that, the space dependent magnetostatic field is composed with static

Hms(r) and dynamic parts hms(r):

Hms(r) = Hms(r)ẑ + hms
x (r)x̂+ hms

y (r)ŷ. (29)

The magnetostatic field components for the planar MC are derived in Sec. III B 3.

To solve Eqs. (27)-(28) we expand all periodic coefficients (in our case MS and lex) in

Fourier series to map them onto the reciprocal space:

MS(r) =
∑

j

MS(Gj)e
iGj ·r,

lex(r) =
∑

j

lex(Gj)e
iGj ·r, (30)

where summation is over reciprocal lattice vectors Gj. MS(Gj) and lex(Gj) are Fourier

coefficients indexed with the reciprocal lattice vectorGj. They can be calculated analytically

or numerically from the inverse Fourier transform:

MS(Gj) =
1

VC

∫

VC

MS(r)e
−iGj ·rdv, (31)

where the integration is over the the unit cell VC (i.e., over volume, area and segment in 3D,

2D and 1D MCs, respectively).

In 1D MCs [Fig. 5] G = (G, 0) = (2π
a
n, 0) where n is integer and a is lattice constant.

The formula for the Fourier coefficients MS(Gj) is following:

MS(Gj) =





∆MS
aA
a
+MS,B, for Gj = 0,

∆MS
aA
a

sin
GjaA

2

GjaA
2

, for Gj 6= 0,
(32)

where ∆MS = MS,A − MS,B, aA is the width of the stripe of material A, MS,A and MS,B

are magnetization saturation of material A and B, respectively. The similar formula are for

lex(Gj).
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FIG. 5: 1D planar MC composed of regular array of stripes made from two ferromagnetic materials

A and B. Materials are saturated along the stripe axis by external magnetic field H0, the stripes

widths are aA and aB, respectively, the period is a.

az

ay
d

A
B

a

kz

ky

y

z
x

(b)

G Y

Z
M

(a)
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2R

FIG. 6: (a) Bi-component MC of square lattice formed by A circular dots of radius R included

in host material B. The thickness of the MC is d, the lattice constant is a. The magnetic field

H0 is oriented along the z-axis. (b) First Brillouin zone (BZ) for the structure shown in (a), with

indicated high-symmetry points Γ, Y, M and Z in the center and at the border of the first BZ. We

distinguish the two directions of the wave vector k along the bias magnetic field and perpendicular

to it, i.e., the backward volume magnetostatic wave (BVMW) and Damon-Eshbach (DE) geometry,

respectively.

In a square lattice the reciprocal lattice vectors are: G = (Gy, Gz) =
2π
a
(ny, nz), where

ny, and nz are integers. In the case of cylindrical dots [Fig. 6] the Fourier components of

the saturation magnetization MS(Gi) are calculated analytically from Eq. (31):

MS(Gj) =





∆MS
πR2

a2
+MS,B, for Gj = 0,

2∆MS
πR2

a2
J1(GjR)

GjR
, for Gj 6= 0,

(33)

where J1 is a Bessel function of the first kind, R is a radius of the dot. Gj is the length of

the reciprocal lattice vector Gj.

The Fourier transformation is also applied to Hms(r), which has the same period as

MC, and to periodic parts of the dynamical components of the magnetization vector and

magnetostatic field defined in Eqs. (16) and (29). Then the Fourier representations of mk(r)
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and hk(r)
ms are:

mk(r) =
∑

j

mk(Gj)e
i(k+Gj)·r

hms
k
(r) =

∑

j

hms
k
(Gj)e

i(k+Gj)·r. (34)

mk(Gj) and hms
k
(Gj) are Fourier coefficients indexed with the reciprocal lattice vector Gj.

By substituting Eqs. (30) and (34) into the equations (27)-(28) we transform LL equation

into the algebraic eigenproblem:

M̂(k)mk(G) = iΩmk(G), (35)

where reduced frequency Ω = ω/(γµ0H0) is the eigenvalue and mk(G) stands for the eigen-

vector of elements:

mk(G) = [mx,k(G),my,k(G)]

= [mx,k(G1),mx,k(G3), · · · ,mx,k(GN),

my,k(G1),my,k(G3), · · · ,my,k(GN)] . (36)

There, N reciprocal lattice vectors, usually of the shorter length, have been used in the ex-

pansions (30) and (34) to get finite set of algebraic equations suitable for numerical solution.

The matrix M̂ is the block matrix:

M̂ =


Mxx Mxy

Myx Myy


 , (37)

with submatrices defined as follows:

Mxx
ij = Myy

ij = 0,

Mxy
ij = δij −

hms
y (Gi−j)

H0

+
Hms(Gi−j)

H0

+
∑

l

(k+Gj) · (k+Gl)

H0

l2ex(Gl−j)MS(Gi−l),

Mxy
ij = −δij +

hms
x (Gi−j)

H0

−
Hms(Gi−j)

H0

−
∑

l

(k+Gj) · (k+Gl)

H0

l2ex(Gl−j)MS(Gi−l),
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where Gi−j ≡ Gi − Gj. We have assumed that the magnetostatic field defined here has

contribution only along axis related to its component.

To compute the dispersion relation of SWs ω(k) we have to solve eigenproblem (35) for

successive values of k along the irreducible part of the first BZ, for the square lattice this is

along the path marked in Fig. 6(b) with dashed line. Numerically, Eq. (35) can be solved

only for the finite number of terms (N) in the Fourier expansions [Eqs. (30) and (34)]. This

number needs to be chosen sufficiently large to guarantee converged results.

3. Demagnetizing field

The remaining factor which needs to be evaluated before solving numerically eigenproblem

(35) is a magnetostatic field, formally introduced in Eq. (29). In general, both static and

dynamic parts of this field are inhomogeneous. In MC, even at saturation, the magnetization

is inhomogeneous, thus ∇ · M 6= 0.

Magnetostatic field can be defined as a gradient of the magnetostatic potential: Hms =

−∇ψ, where Hms has static and dynamic components according with Eq. (29).117 The mag-

netostatic field can be derived from the solution of the Poisson equation for the magnetostatic

potential ψ:

∇2ψ + ρM = 0, (38)

where ρM = −∇·M can be interpreted by analogy with electrostatic, as an effective density

of the magnetic charges. The solution of Eq. (38) can be written as:46

ψ(r) = −
1

4π

∫
∇′ · M(r′)

|r − r′|
d3r′, (39)

where integration is over whole space and ∇′ means differential operator with respect to r′.

We can split the integration in Eq. (39) into two terms according with the Gauss theorem:

ψ(r) = −
1

4π

[∫

V

∇′ · M(r′)

|r − r′|
d3r′ −

∮

S

M(r′) · n

|r − r′|
dS ′

]
. (40)

The first integral is over entire volume of the magnetic body V , the second term is integral

over the surface of the magnetic body S, n is the unit vector which points at direction

normal to the surface. In case of homogenous magnetization ∇·M = 0 and only the second

term contribute to Hms. In this case a demagnetizing field inside of the body and stray
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magnetic field outside of the body can be interpreted as a result of the surface magnetic

charges.

Here, we use different approach, which is based on solution of Eq. (39) in plane wave

basis.47 With integration by parts, the solution (39) can be transformed to the form:46

ψ(r) =
1

4π

[
−

∫
∇′ ·

(
M(r′)

|r − r′|

)
d3r′

+

∫
M(r′) · ∇′ 1

|r − r′|
d3r′

]
. (41)

The integration is extended over whole space here. According with the divergence theorem,

the first term is transformed into integral over the closed surface. Because this surface

is outside of the magnetic material, it can be in infinity, this term vanishes. Taking into

account that ∇′ (1/|r − r′|) = −∇ (1/|r − r′|), the second term can be rewritten:

ψ(r) = −
1

4π
∇ ·

∫
M(r′)

|r − r′|
d3r′

= −
∑

xi=x,y,z

∇xi

[
1

4π

∫
Mxi

(r′)

|r − r′|
d3r′

]
. (42)

One can notice that the integral inside of the Eq. (42):

Φxi
(r) ≡

1

4π

∫
Mxi

(r′)

|r − r′|
d3r′ (43)

is formally a solution of the Poisson equation inside of the MC:

∇2Φin
xi
(r) = −Mxi

, (44)

which outside of the MC takes the form of the Laplace equation:

∇2Φout
xi

(r) = 0. (45)

Because Φxi
(r) fulfills Eqs. (44) and (45), thus by analogy with electrostatic potential,46

the magnetization component from the right hand side of Eq. (44) can be interpreted as a

density of magnetic charges and Φxi
as a potential due to these charges.

Eqs. (44) and (45) accompanied with boundary conditions at the MC film surfaces x =

±d/2:

Φin
xi
= Φout

xi
and

∂Φin
xi

∂x
=
∂Φout

xi

∂x

are used to derive the formula for density of the magnetic charges inside of the magnetic

film Φin
xi
. Here, we follow the expansions into the Fourier series of the static component of
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the magnetization vector Mz ≡ MS and exploiting the Bloch theorem with Fourier series

for dynamical components of the magnetization, i.e., mx and my. The respective magnetic

densities follow similar transformations, i.e., Φ
in(out)
z Fourier expansion, Φ

in(out)
x and Φ

in(out)
y

using Bloch theorem with the Fourier expansion of the periodic parts. For Φ inside of the

MC we get:

Φin
z (r) =

∑

j

MS(Gj)
1 − cosh(Gjx)e

Gjd

G2
j

eiGj ·r

Φin
x,(y)(r) =

∑

j

mk,x(y)(Gj)
1 − cosh(|k+Gj|x)e

|k+Gj |d

(k+Gj)2

×ei(k+Gj)·r. (46)

According with Eq. (42) the divergence of Φ provides the magnetostatic potential ψ, from

which the magnetostatic field components can be directly calculated.48,49

For the considered structure, each component of the magnetization vector can contribute

to each component of the magnetostatic field Hms, however we will limit here only to the

fields related to the same components of the magnetization. With this approximation we

get the following expression for the static and dynamical components of the magnetostatic

field in planar MC:

Hms(r, x) =
∑

j

Hms(Gj, x)e
iGj ·r (47)

= −
∑

j

MS(Gj)
Gz,j

2

G2
j

A(Gj, x)e
iGj ·r,

hms
x (r, x) =

∑

j

hms
x (Gj, x)e

i(k+Gj)·r (48)

= −
∑

j

mx(Gj)C(k+Gx,j, x)e
i(k+Gj)·r,

hms
y (r, x) =

∑

j

hms
y (Gx,j)e

i(k+Gj)·r (49)

= −
∑

j

my(Gj)
(ky +Gy,j)

2

|k+Gj|2
A(k+Gx,j, x)

×ei(k+Gj)·r,

where the functions: C(κ, x), A(κ, x) are defined as: C(|κ|, x) = cosh(|κ|x)e−|κ|d/2 and

A(κ, x) = 1 − sinh(|κ|x)e−|κ|d/2.
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The obtained formulas for the demagnetizing fields are represented in the reciprocal space

for the in-plane components, but depend also on the position across the thickness of the slab.

However, when the slab is thin enough (which is the case for structures studied in this paper),

the non-uniformity of the demagnetizing fields across the thickness can be neglected, and

respective values of fields from Eqs (49) with x = d/2 are taken in our calculations.50 Because

of its Fourier series form, the solution found for the demagnetizing fields can be used directly

in the Eq. (35).

C. Micromagnetic simulations

Before presenting magnonic band structures in thin-film MCs, we introduce also other

method of the magnonic band structure calculation, it is micromagnetic simulations (MS)

being kind of numerical experiments.51–54 For the other methods of SW dispersion relation

calculations, like a dynamical matrix method or method based on finite element method in

the frequency domain we refer to the literature.55,56

Micromagnetic simulations are effective and widely used in studies of the magnetization

dynamics in nanopatterned magnetic systems. The method is based on solving numerically

full Landau-Lifshitz equation in time domain and real space using finite difference method

(FDM) or finite elements method (FEM). Studies of magnetization dynamics are complex

and time consuming tasks, therefore, correct planing of simulation process is important.

In optimal case one simulation should give us full information about SWs dynamics in the

studied structure, also allows to reproduce full, accurate dispersion relation and spin wave

amplitude distribution.

In this paragraph we present the technique used to obtain dispersion relations with mi-

cromagnetic simulations. At the beginning typical technical details considering proper spin

waves excitation and sampling of obtained results are discussed. Then, the algorithm of

dispersion relation calculations and the algorithm of visualization of the particular modes is

described. At the end of this section, a short introduction to much faster, and easier tech-

nique of obtaining ferromagnetic resonance (FMR) spectra and visualization of the modes

corresponding to resonance frequencies is presented.

In studies of spin waves dynamics micromagnetic simulations are performed in two stages.
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First, so-called static stage, during which stable, static magnetic configuration is achieved.

This is because, the calculations of the spin wave dynamics should be initiated from equilib-

rium magnetic configuration to fulfill conditions of the linear approximation. Aim of second

stage, called dynamic stage, is study of the spin wave dynamics under influence of the dis-

turbing factor, e.g., dynamic magnetic field. Results of the second stage can be further used

to reproduce dispersion relation of spin waves and also spatial distribution of the spin wave

amplitude. We will concentrate on the second stage, directly connected with calculation of

the SW dynamics, we will describe SW excitations suitable to calculation of the dispersion

relation, and describe the post processing of data acquired during simulations.

1. Excitation of spin waves

The simplest method of the SWs excitation is by introducing a small, dynamic magnetic

field (we denote its amplitude as h0), which is perpendicular to the effective magnetic field.

This field should vary in time and space, while its spectrum in frequency space defines

efficiency of excitation of spin waves at particular frequencies and wave vectors.57 Proper

definition of that field is crucial to excite all required modes with sufficient efficiency needed

to reproduce full dispersion relation with high quality. In an ideal case all SWs should be

excited with the same, or at least comparable efficiency, for interesting range of frequencies

and wave vectors. For this purpose very useful is function which takes form of the window

function in Fourier space, more precisely sinc function: sinc(κcutξ) = sin(κcutξ)/(κcutξ),

which has flat Fourier spectra in the κ space in the range (−κcut, κcut): Fξ {sinc(κcutξ)} =

ΘH (κ+κcut)ΘH (−κ+κcut), where ΘH is Heaviside step function. Therefore, to excite SWs

we will use dynamic magnetic fields in the form:

hdyn(r, t) = h0sinc (kcutρ) sinc (2πfcutt) g(r), (50)

where ρ is a distance from point of the excitation, its form depends on required dimen-

sionality of the excited waves and MCs, i.e. in case of 1D MCs and waves propagating in

the direction of periodicity x: ρ = x, in case of 2D MCs and waves propagating in the

plane of the periodicity (x, y): ρ =
√
x2 + y2; and in 3D MCs and omnidirectional waves

ρ =
√
x2 + y2 + z2. Values of parameters kcut and fcut are cut-off wave number and cut-off

frequency, respectively. g(r) is additional space dependent function. When antisymmetric
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modes aren’t taken into consideration, the constant g(r) can be used, g(r) = 1.58,59 However,

whenever the antisymmetric modes are required, there should be applied space dependent

form of that coefficient. For example, the function g(r) = η(x)η(y)η(z) can be used,60 with:

η(xi) =

NA∑

ζ=1

[sin(2πxiζ/a) − cos(2πxiζ/a)] , (51)

where xi stands for x, y or z. For calculations of the low frequency magnonic bands the value

NA can be low (order 5 is enough to obtain good excitation of the antisymmetric modes).

2. Sampling

After excitation, very important technical issue to obtain proper dispersion relation is a

sampling. Its parameters will determine accuracy of obtained dispersion relation and size of

computational problem necessary to solve during post-processing of the simulation results.

Results of micromagnetic simulations can be represented in the form of 4 dimensional

matrix M̂(t, x, y, z) containing whole information about magnetization dynamics during

simulations process sampled with time interval tsampl and space interval xi,sampl. Size of

the matrix (its dimension) is determined by sampling intervals (in space and time) and

also by total size of the simulated system, as well as total time of the simulation. From

computational reasons, it is important to use the matrix M̂(t, x, y, z) with dimensions as

small as possible, however simultaneously allowing to obtain clear and accurate dispersion

relation. Too short choose of sampling intervals can result in achieving enormous size of

matrices M̂(t, x, y, z) which can be to big for farther processing due to limited computer

resources. Moreover, improving data storing precision has sense only until some limit. After

some limit, making too small time and space intervals (storing more points in space and

time), doesn’t improve visibly accuracy of the obtained dispersion.

Sampling intervals determine maximal values of the wave vector components ki and fre-

quency f available in the Fourier space, i.e. ki,max = π/xi,sampl and fmax = 1/(2tsampl). Size

of the matrix M̂(t, x, y, z) defines resolution of the image obtained in wave vector and fre-

quency domain [∆ki,x = ki,max/(2 dimi M̂(t, x, y, z)), ∆f = fmax/(2 dimt M̂(t, x, y, z)), where

operator dimi and dimt gives dimension of the matrix along i-th dimension i ∈ {x, y, z},

and time, respectively].
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Next issue is a number of points in dispersion relation along ki axis inside the first

Brillouin zone. This number is equal to half of the total periods along the i-th axis used

in simulations. Therefore, to obtain precise dispersion relation it is necessary to simulate

sufficiently long structure, in practice consisted at least several dozen periods. To summarize,

non-homogeneity of the exciting dynamic magnetic field and the structure long for many

periods is essential to get dispersion relation. Periodic boundary conditions (as defined in

micromagnetic simulations, i.e., by making finite number of copies of the unit cells) cannot

be used to limit size of simulated area in directions of periodicity. However, applying periodic

boundary conditions (PBC) can be used to other purposes, i. e. to avoid influence of the

demagnetizing field from edges of the considered structure.

3. Dispersion relation calculation

From the matrix M̂(t, x, y, z), obtained from micromagnetic simulations, we can calculate

dispersion relation of SWs. General algorithm of calculating magnonic band structure is

presented in Fig. 7(a). In the first step we choose one component of the magnetization

vector, i.e., the i-th component of the matrix, M̂i(t, x, y, z). Then, we calculate Fast Fourier

Transform (FFT), Fd (where d denotes dimension over which FFT is computed) of that

matrix over required dimensions, i.e. in the case of 1D MC over time t and direction of the

periodicity x:

M̃i(f, kx, y, z) = Ft,x

{
M̂i(t, x, y, z)

}
(52)

and

M̃i(f, kx, ky, z) = Ft,x,y

{
M̂i(t, x, y, z)

}
, (53)

M̃i(f, kx, ky, kz) = Ft,x,y,z

{
M̂i(t, x, y, z)

}
(54)

in 2D and 3D MCs, respectively.

In the structures with periodicity along one direction and finite extend in the perpendic-

ular plane, e.g., in the SW waveguides with periodic corrugation of the edges58 or periodic

chain of holes,61 the dispersion relation along one direction can be calculated for fixed coordi-

nates in the plane orthogonal to the periodicity. For instance we can choose y = y0 and z = z0

and calculate dispersion relation along the x direction: M̃y0,z0(f, kx) = Ft,x

{
M̂i(t, x, y0, z0)

}
.
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M̃f0(x, y, z) = M̃(f0, x, y, z )

M̃(f )

∣∣∣
∣∣∣

〈 〉x,y,zM̃(f) = M̃(f, x, y, z)

 Ft {M(t, x, y, z)}

M̃(f, x, y, z) =

Mf0,k0
(y, z) =

F−1

kx

{
M̃f0,k0

(y, z)
}

M̃f0,k0
(y, z) =

δk0+nGM̃f0(k, y, z)

M̃f0(k, y, z) = M̃(f0, k, y, z)

k

∣∣∣M̃(f, kx, y, z)
∣∣∣

M̃(f, kx, y, z) ≡

Ft,x {M(t, x, y, z)}

M(t, x, y, z) ≡ Mi (t, x, y, z)

i ∈ {x, y, z}
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FIG. 7: The algorithm of post-processing of the micromagnetic simulations data in order to obtain:

(a) dispersion relation, (b) visualization of the selected mode from the dispersion relation, which

corresponds to the frequency f0 and the wave vector k0, (c) ferromagnetic resonance spectra, and

(d) visualization of the SW mode corresponding to the resonance frequency f0.

However, if it is essential to include the whole cross section into the analysis, in order to
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obtain full dispersion, summation of the Fourier transforms corresponding for different slices

of the (y, z) plane should be done: M̃(f, kx) =
∑

r,s Ft,x

{
M̂i(t, x, yr, zs)

}
, r and s index here

the slices centered at positions (y = yr, z = zs).

Result of FFT is complex (M̃ ∈ C), and, therefore, to obtain dispersion relation the

absolute value of the matrix
∣∣∣M̃(f, kx)

∣∣∣ needs to be visualized. In the case of higher dimen-

sional MCs that process works analogously. Additionally, in order to improve quality and

visibility of obtained dispersion relations various methods known from signal processing, in

particular image processing can be used, i.e. to show less intense and eliminate spurious

lines in dispersion.

4. Modes visualization

To identify SWs modes corresponding to the particular band, the distribution of the

SW amplitude needs to be calculated. This can be done also from the matrix M̂(t, x, y, z).

The algorithm of such calculations is shown in Fig. 7(b). To simplify description, let us

assume 1D MC (for higher dimensional MCs this process is similar) with dispersion relation

in the form M̃i(f, kx, y0, z0). To visualize the SW excitation at frequency f0 and wave vector

kx,0 we select from the matrix M̃i(f, kx, y0, z0) values corresponding only to the frequency

f0: M̃i,f0(kx, y0, z0) = M̃i(f0, kx, y0, z0). In the next step, we further filter obtained matrix

putting zeros to all values which correspond to kx different from kx,0 + nGx, where n is

integer and Gx is reciprocal lattice vector along x:

M̃i,f0,kx,0(y0, z0) = δkx,0+nGx
M̃i,f0(kx, y0, z0) (55)

The matrix M̃i,f0,kx,0(y0, z0) consists of periodically appearing non-zero values, which cor-

respond to wave-numbers kx,0 + nGx. When we calculate inverse Fourier transform of

M̃i,f0,kx,0(y0, z0) we obtain complex matrix Mi,f0,kx,0(x, y0, z0) = F−1
kx

{
M̃i,f0,kx,0(y0, z0)

}

which represents complex amplitude of the SW mode along the x-axis related to the (f0,kx,0)

point in the dispersion relation.

5. Ferromagnetic resonance studies and visualization of the resonance modes

Computation of the SW dispersion relation is complex and time consuming. In many

cases knowledge about full dispersion relation (ω(k)) is not required, instead information
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about ferromagnetic resonance frequencies, i. e. ω(k = 0), and distribution of the standing

SWs amplitude is sufficient, Fig. 7(c)].

Information about FMR can be derived by investigation magnetic response after ap-

plying spatially homogeneous magnetic field disturbing the static magnetization configu-

ration. Due to homogeneity of the excitation it is possible to use PBCs, which allows

to reduce significantly the size of the computational problem by simulation of only one

unit cell. Similarly, as in previous case, we can apply the dynamic external field with

similar time dependence hdyn ∝ sinc (2πfcutt). Results of simulations can be stored also

in matrix M̂(t, x, y, z). The FMR spectra can be calculated in two ways: i) as an ab-

solute value of the Fourier transform of the averaged in space magnetization evolution:∣∣∣∣F t

{〈
M̂xi

(t, x, y, z)
〉
x,y,z

}∣∣∣∣, or ii) as spatially averaged FFT over magnetization evolution

in each simulated cell:

∣∣∣∣
〈
Ft

{
M̂xi

(t, x, y, z)
}〉

x,y,z

∣∣∣∣. Where we have chosen xi-th component

of the magnetization vector and 〈· · · 〉x,y,z means the spatial average.

Having matrix M̃(f, x, y, z) = F t

{
M̂xi

(t, x, y, z)
}
, spatial distribution of the ampli-

tude of SW related to the resonance frequency f0 can be reproduced [see, Fig. 7(d)].

For selected frequency f0 we extract elements from the matrix in frequency domain,

M̃xi,f0(x, y, z) = M̃xi
(f0, x, y, z) and obtain complex amplitude distribution in space cor-

responding to resonance frequency. Exemplary results of FMR spectra calculations with

visualized modes’ profiles corresponding to resonance frequencies are presented in Fig. 13.

6. Other utilizations of MS

In the previous part of this section we have presented MSs as a useful tool to obtain

dispersion relation of SWs in MCs and to visualize SW excitations. However, MSs give much

wider perspective for study other properties of MCs and more complex systems than ideal

MCs.62 This is investigation of the finite MCs, i.e. with the limited number of repetitions,63

or MCs surrounded by other medias. MSs can be also used to study influence of defects

on SWs’ dynamics.61 The influence of the boundary conditions at the interfaces between

constituents of the MC on the dispersion relation can be also investigated with the use of

MSs.64,65 MSs are useful also for simulations of the transmission, reflection and scattering

of SWs from the surface of the MC or defects. These investigations can lead to acquire

additional information, especially important for applications. For instance, dependence of
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the transmission on the frequency of SWs or influence of the MCs’ surface on the transmission

and coupling.

IV. MAGNONIC CRYSTALS

The magnonic band structures in 1D and 2D planar MCs presented in this section are

calculated by numerical solution of the Eq. (35). The convergence of the obtained results is

checked by numerical verification of the frequency changes with increasing number of plane

waves used in Fourier expansions, N . When the frequency changes less than some set value

we took this N for further the calculations.

A. Spin waves in planar magnonic crystals

The first experimental demonstration of the magnonic band structure formation and

proof of existence of the magnonic band gaps in SW spectra of the bi-component 1D MC

were done for Co and Py stripes.66 The exemplary SW dispersion relations measured with

BLS in MCs composed of Py/Co stripes of 150/250 nm and 250/250 nm width are shown in

Fig. 19(a) and (b), respectively. Thus, for the explanation of the magnonic band structure in

MCs we start from this type of 1D MCs, and subsequently we will present more complicated

geometry, i.e., 2D planar MCs.

1. 1D magnonic crystals

The schematic picture of 1D planar MC under investigation is shown in Fig. 5. It consists

of infinitely long stripes of two ferromagnetic materials (A and B) regularly arranged in the

(y, z) plane. Materials are magnetized along the stripe axis, and SW propagation along the y

axis is considered (this is the DE geometry). To understand formation of the magnonic band

gaps, it is useful to remind the dispersion relation of SWs in homogeneous film with artificial

periodicity introduced in Fig. 4, in the empty lattice model (ELM). This dispersion, limited

to the first BZ, is shown also in Fig. 9(a), with artificial periodicity of a = 500 nm and in

external magnetic field of magnitude of 0.1 T. The bands are degenerate at BZ boundary

(k = π/a) and BZ center (k = 0). These degeneracies are removed, whenever contrast of
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FIG. 8: Measured magnonic band structure in 1D MC composed of Co and Py stripes of (a) 150

nm and 250 nm thicknesses, respectively, and (b) 250 nm and 250 nm. The magnonic band gaps

are marked by shaded rectangles. Reprinted with permission from Z. K. Wang, V. L. Zhang, H. S.

Lim, C. Ng, M. H. Kuok, S. Jain, and A. O. Adeyeye, ACS Nano 4, 643 (2010). Copyright (2010)

American Chemical Society.

any parameter relevant to magnetization dynamics will be introduced.

For instance, the change of the saturation magnetization and the exchange constant by

10% in material A is sufficient to split magnonic bands. In Fig. 9(b) the magnonic band

structure of 1D MC composed of Py and an artificial material (with MS = 0.9MS,Py and

A = 0.9APy) stripes shows magnonic band gaps between successive bands. There is magnonic

band gap of 0.5 GHz width between first and second band. We assumed a filling fraction,

i.e., the ratio of the A stripe width (aA to the lattice constant, ff = aA/a), 0.5. Further

increase of the magnetization contrast results in flattening of the bands and increasing band
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FIG. 9: (a), (b) and (c) Magnonic band structure in homogeneous Py film with artificial periodicity,

in magnonic crystal (MC) composed of Py stripes and material with 10% increased MS and A as

compared to Py, and bi-component MC composed of Py and Co stripes, respectively. MCs are

saturated by external magnetic field of 0.1 T, the filling fraction is 0.5. Magnonic band gaps are

marked with shadow rectangles in (b) and (c). In (c) the amplitude of SW excitations from the

three magnonic bands of lowest frequencies are also presented.

gap width. In Fig. 9(c) the SW band structure of the Co/Py MC is shown. At the same

widths of Py and Co stripes, due to magnetization saturation and exchange constant of Py

lower, than of Co, the magnonic bands at lowest frequencies are formed by standing SW

excitations in Py stripes (see Fig. 9(c)).67,68 In Co stripes there are present forced oscillations

of the magnetization due to exchange coupling at interfaces. These amplitudes decay with

increasing distance from the interface.

The band gap width and position in the frequency scale can be tailored by varying

the structural parameters, such as filling fraction, lattice constant or film thickness. The

magnonic band structure in dependence on these three parameters is shown in Fig. 10. The

dependence on filling fraction [Fig. 10(a)] has two natural limits: ff = 0 the homogeneous

Co film and ff = 1 the homogeneous Py film. At these values of ff the SW dispersion

is continuous without band gaps, like in the empty lattice model in Fig. 9(a). The small

change in filling fraction results in opening the band gaps. The gap between first and second

band exists in the whole range of ff (excluding two limiting values) and the value of ff for

the widest gap can be extracted. Other band gaps have non-monotonous change with ff

and can be closed at intermediate values of ff .
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The increase of the lattice constant results in shift of the BZ boundary to smaller

wavenumbers. It means that the first band will end at lower frequencies. The low fre-

quency cut-off of the magnonic spectra (the FMR frequency) is almost independent on the

change of a, pointing at the unpinned magnetization dynamics at the Py/Co interfaces.

These contradictory changes of the first magnonic band edges result in significant increase

of the width of the first magnonic band with decreasing a. Indeed, such dependence is ob-

served in Fig. 10(b), where magnonic band structure of the Co/Py MCs projected on the

frequency scale is plotted in dependence on a, for fixed ff = 0.5 and d = 20 nm.
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FIG. 10: Magnonic band structure calculated with PWM in Co/Py bi-component MC in depen-

dence on (a) filling fraction, (b) lattice constant and (c) thickness of the MC. In (a) the lattice

constant and thickness are fixed to 500 nm and 20 nm, respectively. In (b) the filling fraction is

0.5 and the thickness is 20 nm. (c) The lattice constant and filling fraction are 500 nm and 0.5,

respectively. In all plots external magnetic field of 0.1 T is parallel to stripes. In all figures the

vertical dashed line points at the band structure of the same MC, i.e, MC with the band structure

presented in Fig. 9(c).

Dependence of the magnonic band structure on the MC’s thickness is shown in Fig. 10(c)

for Py/Co MC with fixed lattice constant (500 nm) and filling fraction (0.5). We can see,

that the influence of d is substantial for the width of the first band. This dependence has the

same origin as the dependence of the dispersion relation of the DE wave on the thickness

in homogeneous film. It is, the increase of the film thickness pull up the group velocity

of SWs to higher values in the long wavelengths. The higher bands increases frequency

with increasing thickness, but they saturate already at relatively small d. For larger d the

bands are narrow (apart from the first band), what points at weak coupling between SW
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excitations in neighbor stripes. The excitations from these bands have nodal points across

Py width, making the dynamical magnetostatic field, which is responsible for the coupling,

weak. In calculations we have neglected the variation of the dynamical magnetization across

the MC thickness, thus the standing SW resonances are excluded from this consideration.

The other types of MCs are these composed of separated ferromagnetic stripes. In this

case only dipole interaction are responsible for formation of the magnonic band struc-

ture. Thus the size and shape of stripes and separation between them steer collective

SWs dynamics.69 The possibility for control of the magnetization alignment in the ar-

rays of stripes (ferromagnetic or antiferromagnetic) has allowed to demonstrate the re-

programmable magnonic band structure in MCs.70–74

The periodicity in magnonic systems can be introduced also in other ways. For in-

stance, the periodic modulation of the external magnetic field applied to homogeneous film

is sufficient to create magnonic bands and band gaps.75,76 Also an array of groves etched

on the surface of the film, periodic magnetic anisotropy field induced from inhomogeneous

substrate, or regular array of non-magnetic metallic stripes on homogeneous film are also

sufficient for formation of the magnonic band structure. Each type of periodicity has its

own specificity,77 which can be exploited for various applications.

2. 2D magnonic crystals

Among the plane 2D MCs we can distinguish three main types of MCs. These are arrays

of dots, antidot lattices (ADL) and bi-component MCs (BMC), as shown schematically

in Fig. 11 (a), (b) and (c), respectively. The former is composed of a regular array of thin

ferromagnetic dots (material A), the second is a negative of the former, i.e., it is created by an

array of holes in thin ferromagnetic film of the material B. The last group can be regarded as

a superposition of both, i.e., the ADL with holes filled with ferromagnetic material different

from the material of the ADL. Those three groups present distinct features in the SW

propagation, which we will discus in this section.

The collective dynamics of the magnetization in the array of dots is solely due to dipole

coupling between excitations of the dot. The SW excitations are also influenced by static

demagnetizing field (including a stray magnetic field from the array) resulting in a change

of profile of the internal magnetic field (see Fig. 12(a)) and change of the magnetization
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FIG. 11: Two dimensional planar MCs: (a) the array of ferromagnetic dots made from material A,

(b) antidot lattice of material B, and (c) the bi-component MC composed of materials A (material

of the dots) and B (host material). All MCs have square lattice with lattice constant a and thickness

d.

configuration. In the case of weak coupling (large separation between dots with respect to

their thickness and magnetization), the magnonic spectra consists of flat bands with SW ex-

citations corresponding to the eigenmodes of the isolated dot. These are edge modes (EMs),

fundamental mode (FM) and modes with the nodal lines along (BA) and/or perpendicular

(DE) to the direction of the external magnetic field. They can have measurable intensity (see

FMR spectra in Fig. 13(a)) and are visualized in Fig. 13(b) and (c) for the array of weakly

coupled Py dots due to their significant separation. The EM amplitude is concentrated near

the ends of the dot in the wells of the internal magnetic field formed by the demagnetizing

field (Fig. 12(a)). The FM has no phase oscillations and the maximum of the amplitude

concentrated in the middle part of the dot.
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FIG. 12: The demagnetizing field calculated from the Eq. (47) (with the minus sign) in (a) array

of Py dots (radius 150 nm) and (b) in the antidots lattice (ADL) (radius of holes 150 nm). In both

cases the thickness of Py is 20 nm, period of the square lattice 600 nm and saturation along the z

axis.

When the coupling between dots increases, the levels of eigenmodes split into the bands.

34



P
ha

se
A

m
pl

itu
de

EM

EM

H
0

BA

BA

FM

FM

DE/BA

DE/BA

(a)

(b)

(c)

FIG. 13: (a) Ferromagnetic resonance (FMR) spectra, (b) amplitude and (c) phase distribution

of the SW excitations in the array of the Py dots array (radius 150 nm, lattice constant 600 nm,

thickness 20 nm and external magnetic field µ0H0 = 0.1 T). The modes in (b) and (c) are ordered

with increasing frequency from the left to right: edge mode (EM), mode with nodal lines along

the direction of the external magnetic field (BA), fundamental mode (FM), and high frequency

modes with nodal lines along and perpendicular to the magnetic field (DE/BA). The results of the

micromagnetic simulations.

However, the dynamic dipole interaction between dots is effective only for selective eigen-

modes. From these types of modes collective excitation of the array can be formed.36 In

Fig. 14 the dispersion relation of SWs in the array of Py circular dots (diameter 600 nm,

thickness 50 nm and lattice constant 655 nm) measured with Brillouin light scattering (solid

dots) and calculated with dynamical matrix method (lines) are shown.78 The bands con-

nected with the fundamental (thick solid line) and low order BA magnetostatic mode type

show valuable dispersion (i.e. nonzero slope of the band). The other types of the excita-

tions (edge modes, bulk modes with high quantization or perpendicular standing spin waves

(PSSWs)) are dispersionless.

In ADL, the low frequency part of the SW spectra is determined by profile of the inhomo-

geneous static demagnetizing field created by magnetic surface charges at edges of the holes,

which has reverse shape as compared to the array of dots (compare Fig. 12(a) and (b)). Due
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FIG. 14: Measured (full circles) and calculated (lines) magnonic band structure for the 2D array of

NiFe disks plotted along two different paths of the first BZ (ΓYMX in panel (a) and ΓMX in panel

(b), respectively). Full black circles are the measured frequency for the continuous (unpatterned)

NiFe film of the same thickness. [Figure taken from G. Gubbiotti, S. Tacchi, M. Madami, G.

Carlotti, R. Zivieri, F. Montoncello, F. Nizzoli, and L. Giovannini, Spin Wave Band Structure in

Two-Dimensional Magnonic Crystals in S.O. Demokritov, A.N. Slavin (eds.), Magnonics, Topics

in Applied Physics 125. Copyright Springer-Verlag Berlin Heidelberg 2013. With kind permission

from Springer Science and Business Media.]

to this field, wells of the internal magnetic field form close to the holes and magnetization

dynamics can concentrate amplitude in these areas. Indeed in ADL, EM localized at the

edges of the holes and SWs concentrated in channels between holes were found (Fig. 15).
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The transition of the SWs (EM and fundamental mode) from quantized to propagative can

be controlled by separation between antidots but what is more interesting also in the same

structure by change of the magnetic field direction. In addition to the demagnetizing ef-

fects, the quantization of the SW excitations modify the spectra. This effect dominates for

exchange SWs, i.e., at high frequencies or when the lattice constant is small.61,79

FIG. 15: (a) SW spectra at zero weve number as a function of the angle of the external magnetic

field in ADL made from 30 nm thick Py film with rhombic array of holes (of 250 nm diameter).

Amplitudes of SWs from bands A, D and C marked in (a) for 0, 15 and 30 degree. Dotted lines

mark position of the holes. Reprinted from Ref. [49]. Copyright (2012) by the American Physical

Society.

In BMC the inhomogeneous demagnetizing field is still present, however its amplitude de-

pends on the difference between magnetization of the constituent materials. Thus, the influ-

ence of the demagnetizing field on SW dynamics is weaker than in ADL. The BMC composed

of Co circular dots embedded in Py (Ni80Fe20) matrix were investigated experimentally.80,81

The BLS measurements showed the existence of the two types of low frequency SW exci-

tations concentrated in regions perpendicular to the external magnetic field, one containing

Co dots and second in Py matrix between the Co dots.82

For demonstration the principle properties of magnonic band structure in 2D BMCs we
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consider MCs composed of square lattice of circular Co dots of radius R = 155 nm (material

A) embedded in Py (host material B) as shown schematically in Fig. 6(a). We assume lattice

constant a = 600 nm and thickness 20 nm. The first BZ has a square shape covering wave

vectors with in-plane components ky and kz between −π/a to π/a as shown in Fig. 6(b), at

the first BZ border k ≈ 5 × 106 m−1. The magnetic field is in the film plane along the z

axis. The structure and its parameters are fixed to values used in Ref. [81].

We start with the discussion of the model of homogeneous ferromagnetic film with an

artificial periodicity, i.e., the ELM. The results of the PWM calculations for 20 nm thick

film with a square lattice artificial periodicity and averaged values of magnetic parameters

(of Co and Py) are shown in figure 16(d). There is a dense spectrum of magnonic bands,

which is a direct consequence of the periodicity. The analytical dispersion relation of SWs

in a homogeneous thin film is marked by bold dashed line (red online). We see a perfect

coincidence of the analytical and numerical results.

We can qualitatively explain that spectra based on properties of the Bloch’s theorem

(Sec. III A). The discrete translational symmetry in real space introduces the periodicity

of the dispersion relations f(k) = f(k + G). In the center of the BZ (k = 0) additional

solutions (frequencies 2 – 9) occur as compared to the single solution (frequency 1) in

the homogeneous film. These solutions are exactly the same as for spin waves with wave

vectors equal to the respective reciprocal lattice vectors. In the case of the ferromagnetic

film considered here, SWs with wave vectors k = G01, G02, G03 and G04 have frequencies

below 7.57 GHz (the indexes for reciprocal lattice vectors refer to centers of the successive

BZs: Gn,m = 2π/a (n,m), see Fig. 16 (a)). It means that these frequencies are below the

frequency of the DE mode at the first BZ boundary [7.57 GHz, right edge of Fig. 16(b)].

The new mode frequencies appear at the BZ center (frequencies 2 - 9) once the periodicity

is introduced, as it is schematically shown in Fig. 16 (b) by arrows. The same will happen

for other wave vectors with k 6= 0 in the first BZ.

Because in ELM the periodicity is artificial, the eigenvector solutions should be consistent

with the plane waves, being solutions of the homogeneous film. The profiles of the SW modes

calculated within the ELM in the BZ center are shown in Fig. 16(c) and they are just the

same as plane wave solutions of the homogeneous thin film with wave vectors being equal

to the respective reciprocal lattice vectors. Not shown in Fig. 16 (c) is profile of the mode

1 because it is a uniform excitation. The pairwise degeneracy of the modes 2 and 3, 4 and
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FIG. 16: (a) Reciprocal space with a few reciprocal lattices vectors (Gij) for the 2D MC with a

square lattice. The gray-shaded area marks the first BZ. (b) Dispersion relation (dashed lines) of

SWs in a homogeneous ferromagnetic thin film with in-plane magnetization and external magnetic

field (µ0H0 = 0.02 T). The dispersion is shown along the kz and ky direction, i.e., in BVMW and DE

geometry, respectively. Vertical dotted lines show positions of the Gij introduced by periodicity.

The gray-shaded area marks the first BZ that would follow from a periodicity of 600 nm. (c) The

spin-precessional amplitudes of SWs at the center of the BZ as derived from the ELM (modes 2

to 9). The respective value of the wave vector is written below each mode. (d) Magnonic band

structure in the first BZ for the homogeneous film with the artificial periodicity introduced (the

lattice constant a = 600 nm), i.e., the empty lattice model (ELM). The part of the dispersion from

(a) is marked by a bold dashed line (red online). The low-frequency branches along kz are formed

directly by shifts (back-folding) of the SW dispersion relation from higher-order BZs by respective

reciprocal lattice vectors. The frequencies in the BZ center (k = 0) are obtained by shifts according

to the arrows shown in (a).
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FIG. 17: (a) Magnonic band structure of a 2D bi-component MC consisting of Co dots in Py

with a = 600 nm calculated along different directions of the first BZ of Fig. 6 (b). The sample is

saturated along the z-axis by the static external magnetic field µ0H0 = 0.02 T. The bold dashed

line (green online) marks the DE-like mode in the first BZ. (b) Modulus of the spin-precessional

amplitude for low frequency modes with wave vectors from the center of the BZ (Γ point). The

numbers 1 to 9 in (a) and (b) indicate the mode number. In (b) the SW profiles are grouped

into symmetric (S) and antisymmetric (AS) modes with respect to a line parallel to the y-axis

and crossing the Co dots in the middle. (Note: the wave vector in this figure is indicated by q.)

Reprinted from Ref. [81]. Copyright (2012) by the American Physical Society.

5, 6 and 7, 8 and 9, seen in Fig. 16 (d) is a direct consequence of the artificial periodicity.

The profiles of these sets of degenerate modes have the same shape but are shifted by a/4

along the z-axis, thus in the homogeneous film their energies are degenerate.

The magnonic band structure calculated along the path Z-Γ-Y-M-Z of the first BZ [Fig. 6

(b)] for a 2D BMC composed of Co dots in Py is shown in Fig. 17. The MC is saturated

in the periodicity plane along the z-axis by an external magnetic field µ0H0 = 0.02 T.

According with expectations from ELM (Fig. 16(d)), the magnonic band structure in Fig. 17

is composed of many bands. We can point at the obvious similarity between the magnonic

band structure of BMC shown in Fig. 17(a) and the SW dispersion calculated in the ELM

(Fig. 16 (d)), but there are also discrepancies. We distinguish four main differences:

i. The low frequency of the first mode in the bi-component MC. This is an effect of

the static demagnetizing field which decreases the effective magnetic field in Co at
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the interfaces with Py (due to higher magnetization in Co than in Py) and creates

potential wells for SWs, resulting in mode channeling confirmed by micro-focused BLS

measurements.80

ii. The larger splitting of the bands 2 and 3 and small splittings between the bands 4 and

5, 6 and 7, 8 and 9. Near the Γ point, the spin wave modes 1 and 3 concentrate their

maxima in two complementary channels parallel to the y-axis comprising of the Co

dots and in between them, respectively (Fig. 17(b)). In comparison to the spectrum of

the ELM (Fig. 16 (d)), the dispersive branch of the mode 3 in the bi-component MC

is shifted to higher frequencies near the Γ point with respect to mode 2. This effect is

also due to the inhomogeneous demagnetizing field not considered in the ELM.

The dispersions f(k) of the modes 4 to 9 in the spectrum of both the BMC and ELM

are very similar. These modes in the center of the BZ are directly related to the

BVMWs of the homogeneous film folded back into the first BZ due to periodicity. The

profiles of the plane waves from the ELM (Fig. 16(c)) and amplitudes of modes in

the bi-component MC along the z-axis (Fig. 17(b)) are closely related to each other.

In the unit-cell center (i.e., in the Co dots) there are maxima of the spin-precessional

amplitudes for symmetric modes (modes 4, 6 and 8) and nodal lines for antisymmetric

modes (5, 7 and 9). These differences in the position of amplitude maxima are respon-

sible for the band splittings at the BZ boundary and center. The splittings between

bands in the bi-component MC decrease with increasing mode number.

iii. The crossing and anti-crossing between DE mode and other SW excitations in the

BMC. We have already shown that with increasing wave vector component ky, the

DE mode (marked by a bold dashed line (green online) in Fig. 17(b)) crosses other

bands in the ELM (Fig. 16(d)). Because folding to the first BZ is due to the artificial

periodicity in the ELM, interaction between modes is absent. But in the BMC the

DE-like mode interacts with other modes.

iv. Magnonic band splitting at the BZ boundary or center. This splitting results from the

destructive interference of Bragg reflected DE-like SWs at the BZ boundary.81 The

value of this band splitting at the first BZ border can be estimated analytically based

on the PWM formulas.
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The DE-like wave can be considered as 1D wave which propagates along the y axis.

Then, limiting the Fourier expansions (34) to the two dominating plane waves, i.e.,

with coefficients mkBZ
(G0 = 0) and mkBZ

(G10 = [2π
a
, 0]), the frequencies of the first

(f−) and second (f+) DE-like bands at the BZ boundary (kBZ = [π
a
, 0]), at the points

e and f in Fig. 17(d), respectively, can be expressed as:

f± =
γµ0

2π

√
H0 + CkBZ

(MS(0) ∓MS(G10))

×
√
H0 + (1 − CkBZ

)(MS(0) ∓MS(G10)), (56)

where Ck = 1−e−|k|d

2
and MS(G) is calculated from Eq. (33). From this equation,

we find that the width of the band gap increases almost linearly with the magnetic

contrast, i.e., with MS,Co – MS,Py. This property was confirmed experimentally.81

For SWs in thin films with out-of-plane magnetization the isofrequency contours are

isotropic, mimicking the case of electromagnetic waves in an isotropic dielectric medium.33,83

Moreover, in the dipole dominating part of the spectra ω is a linear function of k (see

bottom part of Fig. 3(f)). The magnonic band structure of homogeneous Py film magnetized

perpendicular to its plane (by the external magnetic field 1.2 T) with the artificial periodicity

a = 600 nm (the ELM) is shown in Fig. 18(a). We can see the linear dispersion relation

of spin waves and degeneracy of the first and the second magnonic band at the first BZ

boundary marked by dashed line. As compared to the geometry with the in-plane magnetic

field, the frequency at the BZ border is similar for different directions of k (it belongs to the

range between 6.6 and 6.8 GHz). This means, that the magnonic band gap shall be more

easy to open in FVMW geometry, than in BVMW-DE geometry.

In Fig. 18 (b) we show the magnonic band structure of the MC composed of square

lattice of Co dots embedded in Py thin film (10 nm thick). Both materials are magnetized

perpendicular to the film plain. Due to the narrow bands and large magnonic band gaps

we split the figure into two separate plots showing first band (bottom plot) and second

with third band (top plot). The narrow bands point at localized character of the spin wave

excitations, which is confirmed by spatial distribution of the spin wave amplitude shown in

Fig. 18(c). In all three bands the spin waves concentrate in Co dots and their frequencies

are close to the normal excitations of the Co dot, slightly broadened by the interaction in

the array. This strong concentration of the spin wave amplitude in Co is the result of static

demagnetizing field which is much larger in Co than in Py.
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FIG. 18: (a) Magnonic band structure of a homogeneous Py film magnetized perpendicular to the

film plane with an artificial periodicity of the square lattice. External magnetic field µ0H0 = 1.2

T, the lattice constant a = 600 nm and film thickness of 10 nm was assumed. (b) Magnonic band

structure of bi-component magnonic crystal (Co dots of 155 nm radius in Py matrix) in FVMW

geometry with perpendicular magnetic field 1.5 T. The different frequency scale is assumed for the

first and second with third band. (c) Modulus of the amplitude of the dynamical component of

magnetization vector for spin wave modes from the center of the BZ.

3. Exchange spin waves in 2D MCs

Molding the flow of exchange SWs can be realized in MCs with sufficiently small lattice

constant. Decrease of the lattice constant results in the shift of the BZ boundary toward

large wave vectors, up to the value where at BZ boundary the exchange dominates over

the dipole interactions. In that case magnonic band structure is formed from a parabolic

dispersion relation in ELM.

The magnonic band structure in the ADL made from thin Py film (3 nm thick) with square

holes (the edge length 12 nm) and the lattice constant of 30 nm is shown in Fig. 19(a). In

this figure, the results of the PWM are superimposed with the results of micromagnetic

simulations, with good agreement between both methods. The wide magnonic band gap

is opened between the first and the second band. As expected, the dispersion relation

is parabolic around the Γ point (around the BZ center). However, still some anisotropy

resulting from the magnetostatic interactions is present, which can be seen in isofrequency

contours, which show elliptical deformation, see for instance Fig. 19(b) and contour for

f = 63 GHz.
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FIG. 19: (a) Magnonic band structure in ADL with square lattice of the square holes in Py

film. The solid (red dashed) lines shows the results of the micromagnetic simulations and PWM

calculations, respectively. The full magnonic band gap is marked by green rectangle. (b) and

(c) Isofrequency lines on the ky and kz wave vector plane. Reprinted with permission from [60].

Copyright [2014], AIP Publishing LLC.

Also in BMC the decrease of the dipole interaction results in significant changes of the

magnonic band structure. The PWM results for BMC with dominated exchange interactions

are shown in Fig. 20. We chose square lattice (lattice constant a = 50 nm) of the Ni dots

as the material of inclusions and Fe as a material of the host, and the film thickness 10 nm.

We assume external magnetic field 50 mT in the MC plane. The contribution of the dipole

interactions is still taken into account in calculations. The flat band (with a little negative

slope near the Γ point) along the direction of the magnetic field (Γ → X) is a signature of

the BVMW geometry, while the linear slope along orthogonal direction (Γ → X’) is due to

DE geometry. The anisotropy in the dispersion is still present at the BZ boundary (at X

the frequency is 14 GHz while at X’ it is 12 GHz) but the full magnonic band gap is opened

in this case, as opposed to Fig. 17(a). This gap is an indirect, as the maximum of the first

band is at the M point and minimum of the second band is at X. As expected, due to the

lower FMR frequency of Ni as compared to Fe, the modes from the first two bands have an

amplitude concentrated in Ni. This makes the magnonic bands (and magnonic gap) robust
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on the distortions of the shape of inclusions.

FIG. 20: (a) Spin wave spectrum for a square lattice of square, hexagonal and circular (red, green

and blue lines) Ni inclusions in an Fe host with the small lattice constant a = 50 nm. The assumed

values of the structural parameters are: filling fraction ff = 0.55 and slab thickness d = 10 nm.

An external magnetic field µ0H0 = 50 mT is applied in the film plane along the x-axis. (b) Spatial

distribution of amplitude of the z-component of the dynamic magnetization for the first (bottom

row) and second (top row) magnonic band in the vicinity of the point Γ. Reprinted with permission

from [84]. Copyright [2012], AIP Publishing LLC.

To investigate the impact of the lattice symmetry and the inclusion shape on the spin

wave spectrum the circular, square and hexagonal inclusions arranged in a square lattice and

a triangular one were considered with fixed filling fraction (see Fig. 20).84 It was found, that

the shape of inclusions does not play significant role in the range of small lattice constant

values. However, the symmetry of the lattice is of much importance for the spectrum. In

the spectrum of the MC with the triangular lattice the band gap is significantly wider,
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than in the square lattice.84 The same conclusions were obtained for photonic crystals. The

symmetry reduction by rotating inclusions of non-circular shape or additional scatterer in

the unit cell in 2D MC gives additional possibility for tuning magnonic band gaps.85,86

B. Spin waves in 3D magnonic crystals

The extension of the PWM to calculation of the magnonic band structure in 3D MCs was

developed in Refs. [87–90]. In these papers systematic study of the effect of many factors

on the magnonic band structure were presented. The considered factors include structural

parameters (filling fraction, lattice constant, ellipsoidal deformation of the scattering centers)

and magnetic properties of the constituent materials (contrast of saturation magnetization

and exchange constant).

(b)(a)

FIG. 21: (a) The magnonic band structure of simple cubic magnonic crystal with lattice constant

100 Å. The MC is composed of Fe spheres (radius 26.28 Å) embedded in YIG. The band structure

is plotted along the path in the first BZ shown in (b). Reprinted from Ref. [87]. Copyright (2008)

by the American Physical Society.

The magnonic band structure of the simple cubic (sc) lattice composed of Fe spheres in

the YIG matrix is shown in Fig. 21(a). The calculations are performed along irreducible

part of the first BZ shown in Fig. 21(b). Apart of sc lattice also body-centered cubic

(bcc), face-centered cubic (fcc), and simple hexagonal (sh) crystallographic structure were

investigated.87–90 Both magnetic contrasts, i.e. the saturation magnetization and the ex-

change constant contrast, were shown to play an important role in the opening of magnonic

gaps. A saturation magnetization contrast above a certain critical level provides a sufficient

condition for magnonic gaps to open (even if the values of the exchange constant in the
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constituent materials are equal); the critical value of saturation magnetization strongly de-

pends on the lattice type. The exchange contrast has a signicant effect on the gap width,

but needs to be very large to induce the opening of magnonic band gaps in the absence of

magnetization contrast. As demonstrated in Ref. [87], an important role in the creation of

magnonic band gaps is played by the crystallographic structure. The best conditions for the

occurrence of magnonic band gaps are offered by the fcc lattice. Moreover, the results of

these calculations indicate that the gap width depends on the shape of the scattering centers;

in the fcc and bcc structures the largest band gaps are observed for scattering centers with a

shape close to a sphere. The important role of the lattice constant is demonstrated in cubic

magnonic structures, in which, for lattice constants greater than the exchange length in the

matrix material, the dipole interactions gain in importance, which results in a substantial

reduction of the gap width.

FIG. 22: (a) The magnonic band gap width and (b) the frequency of its central point in magneto-

ferritin based 3D MC of fcc structure with the host material being Fe (red line), Co (blue line) and

Py (green line). Reprinted from Ref. [90]. Copyright (2012) by the American Physical Society.

However, fabrication of the bi-component 3D MCs is big challenge, especially if the lattice

constant is in the nanometer range. The promissing approach is a fabrication based on

self-assembling magnetic nanoparticles,91 or exploit existing 3D dielectric structures.92 The

usage of cage-like proteins to grow magnetic NPs, e.g., magnetoferritin (mFT), a biomimetic
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nanoparticles based on a ferritin, has many advantages: high level of homogeneity, variety

of the sizes and properties of protein cages, diversity in physical or chemical functionality of

protein shells, which allows to control the self-assembly process without modifying the NPs

obtained inside the protein cages. Moreover, mFT NPs can be filled with numerous magnetic

materials resulting in different magnetic properties of the NPs.93 The protein crystallization

technique was used to crystallize mFT NPs, allows to produce highly ordered 3D structures

up to about 0.4 mm in size.94,95 Obtained mFT crystals have high quality fcc structure and

the lattice constant about 18.5 nm. Moreover, it was shown theoretically that dried mFT

crystals have the crystallographic structure and the lattice constant almost optimized for

the occurrence of a complete magnonic band gap, whenever the proteins will be replaced by

ferromagnetic material, see Fig. 22.90

V. APPLICATIONS

Magnonics is a young field of nanoscience and technology dedicated to exploration of

the coherent magnetization dynamics in nanoscale.96–99 Its one of the main objectives is to

exploit the spin wave dynamics for technological applications, including usage of spin waves

for carrying and manipulating information.23 The advantages of magnonics over electron-

ics and photonics include low energy consumption and fast operation rates as compared to

electronic devices,100 and possible integration with standard CMOS technology, at levels im-

possible to achieve with electromagnetic waves.101 Besides that, processing with spin waves

allows easy tunability by the external magnetic field,25 low energy costs tunability by electric

field or stress when combined with magnetoelectric or magnetostrictive materials.102,103 It

can be influenced also by electric current104,105 and allows for magnetic momentum trans-

fer without charge transport, thus magnon spintronics106,107 gives a chance for competing

with electronics and spintronics which is based on charge transport. Moreover, magnetic

structures offer possibility for playing with the magnetic configuration. It means that the

same element can have various spin waves dynamics in dependence on the static magneti-

zation configuration, similar to changes of the resistivity in GMR and TMR structures for

electric current. The operational functionality of magnonic device or its sub-unit can be

reprogrammable effectively70–72 and used for instance to prototype magnonic transistors.23

All these properties make magnonics and especially MCs of thin-film geometry, being a main
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building block of magnonics, interesting also for a number of other fields of nanoscience and

nanotechnology.23,96,108

VI. CONCLUDING REMARKS

Spin wave propagation in ferromagnetic materials is a complex phenomenon. The spin

wave dispersion is highly anisotropic even in homogeneous thin film, where the direction

of the external magnetic field with respect to the orientation of external faces of the film

specifies the particular directions in the space for spin wave propagation. Also a unique

feature of magnonic systems is the presence of two competitive interactions: exchange and

dipole. The relative strength of these interactions varies with the extension (or contraction)

of sizes of the system or its patterning. It means that spin wave spectrum does not scale,

with the sizes of the system.

Magnonic crystals are periodic magnetic structures supporting propagation of spin waves.

They allow to control and manipulate the spin wave propagation. Periodicity in magnonic

system can be introduced in many different ways, e.g., by: i) modulation of material param-

eters, ii) periodic corrugation of surfaces (modulation of width or thickness), iii) periodic

modulation of boundary condition on the interfaces with non magnetic medium, iv) appli-

cation of periodic external magnetic field. The spin waves propagating in magnonic crystal

have a form of Bloch waves. Due to the folding-back and intersection of the different branches

of the dispersion relation the frequency band gaps, forbidden for spin wave propagation can

be opened. By adjusting structural and material parameters of the magnonic crystal we can

tune the spectrum of spin waves.

For the description of spin wave dynamics in the nm and larger scale the classical equation

of motion for magnetic moment in an effective magnetic field called Landau-Lifshitz equa-

tion is commonly used. In this approach magnetic material is described not as the atomic

lattice of spins but as a medium with continuous distribution of the magnetization. Also the

exchange interaction, and if required other type of interactions (e.g., Dzyaloshinskii-Moriya

interactions and magnetocrystalline anisotropy) are expressed as spatially continuous mag-

netic fields, giving the contribution to the total effective magnetic field. The modification of

the dots or antidots shape, their rotations with respect to the crystallographic axis, imper-

fections in their shape or at their edges can further modify SW spectra. Thus, the abundance
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of dots or antidots shapes, their arrangements and magnetic configurations which can be

realized in MCs, makes magnonics inexhaustible and intriguing topic of research.

For technological applications of magnonics, especially in integrated devices and magnon

spintronics, the MCs of thin-film geometry are expected to play a crucial role. The study

of spin wave dynamics in planar magnonic films is also very interesting from scientific point

of view. This is because of anisotropy of the dispersion relation of spin waves is easily

modulated by external factors like magnetic field, which combines the positive and negative

group velocities. Such metamaterial properties in photonics and other fields are only hardly

accessible with sophisticated structuring. Magnonics allows for experimental investigation of

the band structure formation in periodically structured materials with positive and negative

group velocities; study a transmission and reflection of waves from negative/ positive refrac-

tive index media; consideration of the structures with sharp, graded or periodic interfaces;

re-programmable band structure by changing the configuration of the static magnetization,

and utilization of nonreciprocal properties in wave propagation due to permanent violation

of the reciprocity principle or to study influence of nonlinearity — an inherent element of

the magnetization dynamics.
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APPENDIX A: MATERIAL PARAMETERS

As components of MC crystals different kinds of magnetic materials can be used. The

basic parameters of the selected materials used in this paper are listed in the Table I. So

far, the most intensively investigated was ferrimagnetic dielectric YIG109 and metallic Py.
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TABLE I: Values of material parameters: spontaneous magnetization MS and exchange stiffness

constant A of the materials considered in this paper (see, e.g. Ref. [110]).

Material MS A

[106 A/m] [10−11 J/m]

Fe 1.752 1.88

Co 1.39 2.8

Py(Ni80Fe20) 0.810 1.0

Ni 0.480 0.86

YIG 0.136 0.4

APPENDIX B: LIST OF ABBREVIATIONS
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TABLE II: List of abbreviations used in the paper.

Abbreviation Expansion

1D, 2D, 3D one-, two-, three-dimensional

ADL antidot lattice

BA mode with the nodal lines along the direction of the external magnetic field

bcc body-centered cubic

BMC bi-component MCs

BVMW backward volume magnetostatic wave geometry

BZ Brillouin zone

DE Damon-Eshbach geometry

ELM empty lattice model

EM edge mode

fcc face-centered cubic

FDM finite difference method

FEM finite elements method

FFT fast Fourier transform

FM fundamental mode

FMR ferromagnetic resonance

FVMW forward volume magnetostatic wave geometry

LL Landau-Lifshitz

MC magnonic crystal

mFT magnetoferritin

MS micromagnetic simulations

NN nearest neighbors

PSSW perpendicular standing spin waves

PWM plane wave method

Py permalloy

sh simple hexagonal

SW spin waves

YIG yttrium iron garnet
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