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Longitudinal spin dynamics in ferrimagnets: Multiple spin wave
nature of longitudinal spin excitations
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Motivated by the existing controversy about the physical mechanisms that govern longitudinal magnetization
dynamics under the effect of ultrafast laser pulses, in this paper we study the microscopic model of
longitudinal spin excitations in a two-sublattice ferrimagnet using the diagrammatic technique for spin operators.
The diagrammatic approach provides us with an efficient procedure to derive graphical representations for
perturbation expansion series for different spin Green’s functions and thus to overcome limitations typical for
phenomenological approaches. The infinite series involving all distinct loops built from spin wave propagators
are summed up. These result in an expression for the longitudinal spin susceptibility χzz(q,ω) applicable in
all regions of frequency ω and wave vector q space beyond the hydrodynamical and critical regimes. A strong
renormalization of the longitudinal spin oscillations due to processes of virtual creation and annihilation of
transverse spin waves has been found. We have shown that the spectrum of longitudinal excitations consists of a
quasirelaxation mode forming a central peak in χzz(q,ω) and two (acoustic and exchange) precessionlike modes.
As the main result, it is predicted that both acoustic and exchange longitudinal excitations are energetically above
similar modes of transverse spin waves at the same temperature and wave vector. The existence of the exchange
longitudinal mode at such frequencies can result in a new form of excitation behavior in ferrimagnetic system,
which could be important for understanding the physics of nonequilibrium magnetic dynamics under the effect
of ultrafast laser pulses in multisublattice magnetic materials.
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I. INTRODUCTION

Ultrafast laser-induced magnetic switching in ferrimagnets
has become a hot topic of modern magnetism. Uncovering the
physical mechanisms that govern ultrafast spin dynamics is
critical for understanding fundamental limits of ultrafast spin-
based electronics. It is of fundamental importance to realize
the time evolution of magnetic moments at high temperatures
and time scales approaching femtoseconds. A recent review on
the state of the art of ultrafast spin dynamics and its prospects
is given by Kirilyuk et al. [1].

Ultrafast magnetization dynamics induced by femtosecond
laser pulses have been investigated in different ferrimagnetic
alloys [2–9]. Several hypotheses have been put forward to
explain the observed magnetization switching: the crossing
of the angular momentum compensation point [3] and the
inverse Faraday effect [2] and its combination with ultrafast
heating [4], among others [5,10,11]. The first attempts to de-
scribe longitudinal magnetization dynamics in two-sublattice
systems have been proposed recently in Refs. [12–17]. It
has been shown that spin dynamics simulations within the
phenomenological Landau-Lifshitz-Bloch [12–14], Landau-
Lifshitz-Gilbert [15], or Landau-Lifshitz-Baryakhtar formula-
tions [6,16,17] can be used to describe ultrafast laser-induced
demagnetization in multisublattice magnets when a suffi-
ciently large and fast dissipation of spin angular momentum is
assumed.

However, in spite of the progress in phenomenological
description, to achieve an exhaustive theoretical explanation of
ultrafast magnetization dynamics, first-principles calculations
based on quantum-mechanical theory are indispensable. In
particular, at present it is commonly accepted that the short
time scale of the laser pulse and high temperatures following
the excitation lead to processes where longitudinal magnetiza-

tion dynamics becomes pronounced [18]. Naturally, any model
of an ultrafast magnetization switching should correctly repro-
duce equilibrium longitudinal dynamics of the system in the
limit of a long-time evolution. Surprisingly enough, whereas
dynamics of transverse spin components in multisublattice
magnets is well understood theoretically, distinctive features
of longitudinal dynamics are still a puzzling point even in
the system equilibrium state. Dynamics of longitudinal spin
components implies a different physical picture than transverse
spin oscillations and poses specific theoretical problems. In
fact, this is a very important fundamental question that has
not been addressed theoretically to date. Obviously, in-depth
knowledge of the physics of longitudinal spin dynamics can
shed light on the role of the exchange interaction in the ultrafast
dynamics of spin subsystems in complex materials [1].

Note that according to the first publications on this
issue [19,20], the longitudinal spin mode arises because of
a virtual process of coherent creation and annihilation of
ordinary spin waves. In more recent studies based on a dia-
grammatic approach for spin operators [21], for a ferromagnet
the longitudinal excitations have been found at frequencies
ω(q) = [ε(k) − ε(k ± q)] and have been interpreted in terms
of processes of creation and annihilation of two transverse
spin waves with energies ε(k) and ε(k ± q) (here the wave
vector k is a variable). The excitation processes are controlled,
however, by the occupation factor, determined through the
Bose distribution function n(ε(k)), which makes the spin
waves with k ∼ 0 the dominant ones.

Whereas the underlying magnetization dynamics of mul-
tisublattice magnets has become a hot topic at present,
complete understanding of this phenomenon in ferrimagnets
is still missing. In the present paper, a basic understanding of
the longitudinal spin dynamics in ferrimagnetic materials is
addressed. To this end, we used a general theoretical treatment
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aiming to overcome limitations of the models [6,12–17] and
to reveal a unique physical picture common to different
multisublattice magnets. Namely, we consider the micro-
scopic Heisenberg model of a two-sublattice ferrimagnet. The
convenient version of the diagrammatic technique for spin
operators has been used to provide quantitative calculation of
magnetization excitation frequencies and relaxation times. A
detailed account of this diagrammatic technique is given in the
textbooks [22,23].

We start in the next section with the formulation of a
simple model for a two-sublattice ferrimagnet. In Sec. III, a
diagrammatic representation of the longitudinal spin Green’s
functions (GFs) is formulated. Since, as expected, the quantum
dynamics of longitudinal spin components is generated by
virtual processes of creation and annihilation of spin waves,
the mathematical problem reduces to summing up all the loop
diagrams describing these processes. The complexity of the
problem arises from the fact that a commutator of two spin
operators is not a c number. Therefore, the series of the loop
diagrams turns out to be rather complicated and contains
four different types of loops. To sum up these series, we
use a method called generalized random-phase approximation
(RPA) elaborated on earlier (see [24,25]). By summing up
all one- and two-loop diagrams in Sec. IV, we arrive at an
expression for the longitudinal GF, the denominator of which
includes all terms of 1/z order (z is the first coordination
number of a relevant magnetic lattice). Analytic continuation
of the Matsubara-type spin GFs onto the real-frequency axis
determines the longitudinal susceptibility χzz(q,ω) of the
ferrimagnet. The susceptibility is examined as a function of
frequency ω and wave vector q. This analysis shows that the
dynamics of longitudinal spin components corresponds to a
few virtual processes of creation and annihilation of transverse
spin waves. The dynamics was studied and discussed in
detail within an approximation of a quadratic spin wave
dispersion law. The last section summarizes our main results.
Some cumbersome mathematical details are expounded in
Appendixes A–C.

II. THE MODEL

To capture the main physics, we consider the simple
isotropic model for a two-sublattice ferrimagnet. In the
absence of any external influences, the atomistic spin model
is described purely by exchange interactions, given by the
Heisenberg Hamiltonian:

H =
∑
f,g

Jfg

[
1

2

(
S+

1fS
−
2g + S−

1fS
+
2g

) + Sz
1fS

z
2g

]
. (1)

Here S1f and S2g are the spin operators on an fth and gth
sites of sublattices 1 and 2, respectively, and the circular spin
operators are definite as usual, S± = (Sx ± Sy); Jfg stands
for the exchange integral between spins. We will suggest that
S1 > S2 and Jfg > 0, i.e., the sublattices, are in antiparallel
orientation.

We rewrite the Hamiltonian (1) in the form H = E0 +
H0 + Hint. Here E0 = −J0S1S2N is the ground-state en-
ergy (N is the number of magnetic unit cells); H0 stands

for the Hamiltonian of the molecular field of a standard
structure:

H0 = −y
∑

f

Sz
1f − x

∑
g

Sz
2g, (2a)

where y = 〈Sz
2〉J0, x = 〈Sz

1〉J0 and J0 = Jq=0 is the Fourier
transform of the exchange interaction. The interaction Hamil-
tonian Hint is of the form

Hint =
∑
f,g

Jfg

[
1

2

(
S+

1fS
−
2g + S−

1fS
+
2g

)

+ (
Sz

1f − 〈
Sz

1

〉)(
Sz

2g − 〈
Sz

2

〉)]
. (2b)

In the zeroth-order approximation of a self-consistent
field we have 〈Sz

1〉(0) = b1(βy0S1), 〈Sz
2〉(0) = b2(βx0S2), b(z) =

SBS(z), where BS(z) stands for the Brillouin function, y0 =
b2J0, x0 = b1J0, and β−1 = T is temperature. In an antiferro-
magnetic ground state, the mean value of a magnetic unit-cell
magnetization is equal to M = μB(g1b1 − g2b2), where μB

is the Bohr magneton and g1(2) stands for the g factor of the
sublattices.

As is known [22,23,25], within the microscopic (Green’s
function method) approach, the study of a system’s longi-
tudinal magnetization dynamics is based on the dynamic
susceptibility χzz(q,ω) calculation as a function of frequency
ω and momentum q, which in turn is reduced to the retarded
spin GFs calculation: χzz(q,ω) → G(R)(q,ω). In our case, the
calculation of the system’s longitudinal susceptibility χzz(q,ω)
corresponds to the calculation of the retarded longitudinal spin
GF G

zz(R)
tot (q,ω):

χzz(q,ω) = 〈〈
T̂ Mz

tot(t)
∣∣Mz

tot(0)
〉〉∣∣

q,ω

= −μ2
B

v0
G

zz(R)
tot (q,ω). (3)

Here Mz
tot is a z component of the total magnetization

Mtot = μB(g1S1 + g2S2), and vo stands for the volume of
a primitive magnetic cell. The symbol 〈〈· · · 〉〉q,ω denotes
the Fourier transform of the trace of ρ0(· · · ), with ρ0 =
exp(−βH0)/Sp[exp(−βH0)]; T̂ stands for the time-ordering
operator. There are theorems proving that the poles of
the retarded GFs correspond to the natural frequencies of
magnetization excitations that are transverse magnetization
oscillations of the spins or ordinary spin waves and longitudi-
nal spin oscillations. In turn, the retarded GFs of the system can
be obtained from the temperature GFs by analytic continuation
from the Matsubara frequencies iωn onto the real axis iωn →
ω + iδ,(δ → 0) (for more details, see, e.g., [22,23,25]).

In our case of a two-sublattice system, the total GF
G

zz(R)
tot (q,ω) can be reduced to four sublattice longitudinal GFs

Gzz
ij (q,iωn) (i,j = 1,2) as follows:

Gzz
tot(q,iωn) = Gzz

tot(q)

= 〈〈
T̂

(
g1δS

z
1 − g2δS

z
2

)∣∣(g1δS
z
1 − g2δS

z
2

)〉
= g2

1G
zz
11(q) − g1g2

[
Gzz

12(q) + Gzz
21(q)

]
+g2

2G
zz
2 (q), (4)
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where δSz
i = Sz

i − 〈Sz
i 〉 and Gzz

ij = 〈〈T̂ δSz
i |δSz

j 〉〉. Here and
below we use the notation q = {q,iωn}, where q stands for
the momentum and the Matsubara frequency iωn = i2πnT

(n = 0, ± 1, ± 2, . . .). Thus, the calculation of the dynamic
susceptibility χzz(q,ω) reduces to the calculation of the
sublattice longitudinal GFs Gzz

ij (q,iωn).

III. GREEN’S FUNCTIONS OF LONGITUDINAL SPIN
COMPONENTS

To calculate the sublattice GFs we use the Larkin equation
derived earlier in the framework of the diagrammatic technique
for spin operators. Without dwelling on the details of summing
up the diagram series (Refs. [22,23,25] contain technical
details concerning the construction of the spin diagram
technique for the Heisenberg magnet), we present here the
final analytic results. One can show that the graph series for
the Gzz

ij (q) functions of a two-sublattice ferrimagnet can be
presented analytically in the form

Gzz
11(q) = 	z

11(q)
{[

1 − Jq	
z
12(q)

][
1 − Jq	

z
21(q)

]
−J 2

q 	z
11(q)	z

22(q)
}−1

(5)

for Gzz
11(q) and

Gzz
21(q) = {[

1 − Jq	
z
12(q)

]
	z

21(q) + Jq	
z
11(q)	z

22(q)
}

× {[
1 − Jq	

z
12(q)

][
1 − Jq	

z
21(q)

]
−J 2

q 	z
11(q)	z

22(q)
}−1

(6)

for Gzz
21(q). One can obtain expressions for the functions

Gzz
22(q) and Gzz

12(q) from Eqs. (5) and (6), respectively, by
substituting 1 → 2 → 1. In terms of the diagrammatic
technique, the quantity 	z

ij (q) is called the irreducible (by
Larkin’s method of isolating the irreducible diagrams) parts.
Note that the irreducibility is understood here in the sense that
	z

ij (q) is represented by the collection of all diagrams from the
series for Gzz

ij (q) that cannot be cut across a line of interaction
Jq.

Summarizing up the results, for the GF Gzz
tot(q) we obtain

the following general expression:

Gzz
tot(q) = N (q)

D(q)
. (7)

Here we specify the numerator as

N (q) = g2
1	

z
11(q) − g1g2

[
	z

12(q) + 	z
21(q)

−2Jq	
z
12(q)	z

21(q) + 2Jq	
z
11(q)	z

22(q)
] + g2

2	
z
22(q)

(8)

and the denominator as

D(q) = [
1 − Jq	

z
12(q)

][
1 − Jq	

z
21(q)

]
−J 2

q 	z
11(q)	z

22(q). (9)

By calculating the longitudinal GF irreducible parts 	z
ij (q)

we will use the approximation when all ladder diagrams with
antiparallel lines have been summed. Typically, such summing
corresponds to the so-called RPA and rather well describes
the ground state and dynamics of magnetic systems (see,
for example, Refs. [24,25]). This approximation was used,

in particular, by Izyumov at al. [21] to study the longitudinal
spin dynamics in the Heisenberg ferromagnet.

It can be shown that in the case of the zeroth order of a
large interaction radius (or of the zeroth order of the parameter
1/z) one obtains 	z

11(q,iωn) = δn,0b
′
1, 	z

22(q,iωn) = δn,0b
′
2,

	z
12(q,iωn) = 	z

21(q,iωn) = 0 (here b
′

stands for the first
derivative of the Brillouin function and δn,0 = δωn,0 is the Kro-
necker symbol for the corresponding frequency difference).
Within this approximation we get [20]

G
zz(0)
11 (q,iωn) = b

′
1

1 − (βJq)2b
′
1b

′
2

δn,0,

G
zz(0)
22 (q,iωn) = b

′
2

1 − (βJq)2b
′
1b

′
2

δn,0,

G
zz(0)
12 (q,iωn) = G

zz(0)
21 (q,iωn) = b

′
1b

′
2

1 − (βJq)2b
′
1b

′
2

δn,0.

Note that within this approximation we deal with static
fluctuations of the longitudinal spin components, which are
characterized by the Brillouin function derivatives and which
are responsible for the distinction between the isolated and
isothermal susceptibilities of the system (see below). We
emphasize in this relation that the traditional representation
of spin operators by Bose operators (e.g., the Holstein-
Primakov or Dyson-Maleev representations) only accounts
for the dynamic fluctuations in the magnetization, i.e., a
reduction in the magnetization of the sublattice owing to
thermal excitation of spin waves. Static fluctuations of the
longitudinal components of the spin are entirely neglected in
terms of these representations. This circumstance, in particular,
dictates the need to use spin operator diagram techniques
in order to correctly describe properties of the systems at
finite temperatures. The difference in the nature of Bose and
spin operators takes on special significance if we consider
magnetic system behavior at high enough temperatures. In
this temperature region the basic fact of the difference in the
number of states [finite (2S + 1) for spin operator states and
an infinite number of states for Bose operators] plays a crucial
role already in dynamic.

Temperature renormalization of the spectrum and damping
of spin wave excitations owing to the scattering of spin
waves on (longitudinal) fluctuations in the magnetization both
appear in the first approximation with respect to the reciprocal
of the interaction radius. Note that the “standard” damping
of spin wave oscillations owing to their scattering on one
another occurs only in the next (second) approximation of
the perturbation theory. (Spin wave relaxation in rare-earth
ferrite garnets has been studied previously [26].) To restore the
dynamical characteristics, we need to calculate the irreducible
parts 	z

ij (q) within a high-order approximation.
The graphs for the “uncuttable” parts 	z

ij (q) of the
next order (one-loop order) are shown in Fig. 1. The
thick lines represent the “dressed” transverse GFs Gij (q) =
−1/2〈〈T̂ S+

ig|S−
j f〉〉|q,ω, and the open points indicate vertices

corresponding to the operators Sz
i (i = 1,2). The dressed

transverse GFs (thick lines) of spin wave lines are a result
of the summation graphical series for the transverse GFs in the
Hartree-Fock approximation shown in Fig. 2 (here the wavy
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FIG. 1. One-loop order diagrams for irreducible parts of the
longitudinal spin Green’s functions. Here and in Figs. 2, 3, and 4
external hollow vertices correspond to spin operators Sz

i (i = 1,2);
the thick solid line represents the dressed Green’s function G11(q); the
thick dashed line describes the dressed Green’s function G22(q), and
the double solid line illustrates the dressed G12(q) or G21(q) Green’s
function. Only the diagrams describing the Kubo susceptibility are
shown explicitly.

line is the graphical representation of the interaction Jq). The
analytical solution of the graphical equations for the transverse
GFs is given in Appendix A. In accordance with the rules for
the diagram techniques, a block encompassing N operators Sz

is to be compared to the (N − 1)th derivative of the function
b(z) of the form ∼δn,0b

(N−1)(z). The analytical expression
of these diagrams contains a singular discrete frequency part
∼δn,0 and thus does not depend on the thermodynamic time
(see Refs. [22,23] for more details). Let us recall here that the
singular contribution to the temperature GF arises due to the
distinction between the isolated and isothermal susceptibilities
of the system [27,28]. As was shown in these studies, the
intensity of the singular contribution coincides with the dis-
tinction between the isothermal and isolated susceptibilities at
the zeroth frequency. In accordance with the general analysis of
different susceptibilities [27,28] the distinction between them
points to the nonergodicity of the system. We are interested
in the Kubo (or isolated) susceptibility of the system derived
from the quantity Gzz

tot(q,iωn) by analytic continuation from

FIG. 2. Graphical representation of the system of equations for
dressed transverse (a) G11(q) and G21(q) and (b) G22(q) and G12(q)
Green’s functions. The thin solid line represents the undressed (initial)
Green’s function K11(q); the thin dashed line describes the initial
(undressed) Green’s function K22(q). Here and in Fig. 4 a wavy line
corresponds to the interaction Jq.

the Matsubara frequencies onto the real axis iωn → ω + iδ

(δ → 0). For this reason the diagrams which do not depend on
the thermodynamic time (i.e., ∼δn,0) in Fig. 1 (and in Fig. 3
below) are not shown.

Returning to the graphs in Fig. 1 and following the rules
of the diagram techniques, one can obtain their analytic
expressions. For the diagrams in Fig. 1 we write the result
in the form 	z

11(q) = 
(q) + (∼ δn,0), 	z
12(q) = 	z

21(q) =
�(q) + (∼ δn,0), and 	z

22(q) = B(q) + (∼ δn,0). Here (∼ δn,0)
stands for the analytic expressions of the diagrams which do
not contribute to the isolated system susceptibilities (as already
mentioned, these diagrams are not shown in Fig. 1 explicitly).
Then the one-loop graph’s contribution to the longitudinal
GFs is


(q) = N−1β−1∑
p

G11(p)G11(p − q), (10)

�(q) = N−1β−1∑
p

G12(p)G21(p − q), (11)

B(q) = N−1β−1∑
p

G22(p)G22(p − q). (12)

Explicit expressions for the transversal GFs Gij (q) are given
by Eqs. (A3)–(A5).

All possible two-loop diagrams related to the Kubo
(isolated) susceptibility are depicted in Fig. 3. There two
external vertices of the GFs (1 and 2) are represented by
open points with incoming and outgoing Green’s lines. Other
arrangements of external vertices do not exist. The hatched
squares here represent graphically the effective four-point
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FIG. 3. Two-loop order diagrams for irreducible parts of the
longitudinal spin Green’s functions. The hatched squares represent
graphically the effective four-point vertexes �ii,ij (k1,k2|k1 − q,k2 +
q). Only the diagrams describing the Kubo susceptibility are shown.

vertexes �ii,ij (k1,k2|k1 − q,k2 + q). The calculation of these
vertexes is a key point now to proceed further.

The equations for the vertexes �ii,ij (k1,k2|k1 − q,k2 + q)
are presented graphically in Fig. 4. Here, as in Fig. 2, the wavy
line is the graphical representation of the interaction Jq. The
graphical equation for the vortex �11,12(k1,k2|k1 − q,k2 + q)
shown in Fig. 4(a) corresponds to the analytical expression of
the following form:

�11,12(k1,k2|k1 − q,k2 + q)

= Jk2+q + β−1N−1∑
k3

Jk3+qG11(k3)G21(k3 + q)

×�11,12(k3 + q,k2|k3,k2 + q).

This integral equation can be transformed into an algebraic
one. To this end, let us first multiply both sides by Jk1G11(k1 −
q)G21(k1) and then sum up over k1. This results in a linear

FIG. 4. Graphical representation of the equation for the ef-
fective four-point vortex: (a) �11,12(k1,k2|k1 − q,k2 + q) and (b)
�22,21(k1,k2|k1 − q,k2 + q).

equation with the solution

�11,12(k1,k2|k1 − q,k2 + q) = Jk2+q

1 − Q(q)
,

where

Q(q) = N−1β−1∑
p

G11(p)G21(p − q). (13)

The graphical equation for another vortex �22,21(k1,k2|k1 −
q,k2 + q) shown in Fig. 4(b) leads to the analytical expression

�22,21(k1,k2|k1 − q,k2 + q)

= Jk2+q + β−1N−1∑
k3

Jk3+qG22(k3)G12(k3 + q)

×�22,21(k3 + q,k2|k3,k2 + q).

This integral equation can also be rewritten in an algebraic
form. Like in the previous case, we multiplied both sides of
the equation by Jk1G22(k1 − q)G12(k1) and then summed up
over k1. The solution can be presented as

�22,21(k1,k2|k1 − q,k2 + q) = Jk2+q

1 − 
(q)
,

where


(q) = N−1β−1∑
p

G22(p)G12(p − q). (14)

Using the obtained expressions for the vertexes and summing
up all the contributions, we found the following analytic
expressions for the two-loop diagrams shown in Fig. 3:

	
z(2)
11 (q) = 2Q(q)

[

(q)

1 − Q(q)
+ �(q)

1 − 
(q)

]
,

	
z(2)
12 (q) = 	

z(2)
21 (q)

= Q(q)�(q)+
(q)
(q)

1 − Q(q)
+ B(q)Q(q)+�(q)
(q)

1 − 
(q)
,

	
z(2)
22 (q) = 2
(q)

[
�(q)

1 − Q(q)
+ B(q)

1 − 
(q)

]
.
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The total contribution of the one- and two-loop graphs to the
irreducible elements 	z

ij (q) can be written as follows:

	z
11(q) = 
(q)

1 + Q(q)

1 − Q(q)
+ 2

Q(q)�(q)

1 − 
(q)
, (15)

	z
12(q) = 	z

21(q) = �(q) + Q(q)�(q) + 
(q)
(q)

1 − Q(q)

+B(q)Q(q) + �(q)
(q)

1 − 
(q)
, (16)

	z
22(q) = B(q)

1 + 
(q)

1 − 
(q)
+ 2


(q)�(q)

1 − Q(q)
. (17)

Thus, to find the isolated (Kubo) susceptibility χzz(q,ω)
it is necessary to calculate five functions, 
(q), �(q),
B(q), Q(q), and 
(q), given by formulas (10)–(14), re-
spectively. After simple but cumbersome calculations, one
can obtain the analytical expressions for these functions.
They are presented in the explicit form in Appendix B.

IV. LONGITUDINAL SPIN DYNAMICS IN FERRIMAGNET

The excitation spectrum of the system is determined by
the poles of the analytic continuation iωn → ω + iδ of the
temperature GF Gzz

tot(q,iωn). The real part of the pole is the
energy of a quasiparticle excitation, while the imaginary part
characterizes broadening of the energy level, i.e., a quasi-
particle damping. Thus, we should investigate whether the
Gzz

tot(q,iωn) denominator has solutions that would determine
the longitudinal wave excitations. To this end, let us examine
Eq. (9) more closely. First of all, before proceeding to an
estimation of this expression in some limiting cases, let
us qualitatively analyze the origin of the longitudinal spin
excitations in the system under consideration. It is informative
to start with the one-loop order approximation. In this approach
the denominator (9) can be rewritten in the form

D(q) = [1 − Jq�(q)]2 − J 2
q 
(q)B(q). (18)

After summing up over the discrete Matsubara frequency for
the function �(q) = �(q,iωn), Eq. (11), we obtained

�(q) = b2
1b

2
2

N

∑
p

Jp

ε1p + ε2p

Jp−q

ε1p−q + ε2p−q

×
{

n1(ε1p) − n1(ε1p−q)

iωq − ε1p + ε1p−q
− n2(ε2p) − n2(ε2p−q)

iωq + ε2p − ε2p−q
+ 1 + n1(ε1p−q) + n2(ε1p)

iωq + ε2p + ε1p−q
− 1 + n1(ε1p) + n2(ε2p−q)

iωq − ε1p − ε2p−q

}
. (19)

[Here and below we introduce the designation εi(q) = εiq.]
The expressions for 
(q) and B(q), Eqs. (10) and (12), are
represented by Eqs. (B1) and (B2) in Appendix B, and as one
can see, they have similar structures.

The analysis of Eq. (19), as well as Eqs. (B1) and (B2),
shows that the dynamics of longitudinal spin components is
due to a few processes of virtual creation and annihilation of
transverse spin wave modes. Namely, the first channel, the
first item in the braces on the right-hand side (rhs) of Eq. (19),
represents the processes of creation and annihilation of two
spin waves with energies ε1p and ε1p−q, which correspond to
in-phase sublattice magnetization precession. This channel is
controlled by the occupation factor n1(ε1p), which makes the
spin waves with p ∼ 0 the dominant ones. Simple comparison
reveals that this channel is a direct analog of the magnetization
longitudinal dynamics in a ferromagnet found by Izyumov
et al. [21].

There is also the second channel, the second term on the
rhs of Eq. (19), with characteristic energy at ω(q) = ε2p −
ε2p−q. It corresponds to virtual creation and annihilation of
exchange spin waves with antiphase precession of sublattice
magnetization. This channel is also controlled by the related
occupation factor determined through the Bose distribution
functions n2(ε2p), which makes the spin waves with p ∼ 0 the
dominant ones.

It is not difficult to see that the last two items in the braces
in Eq. (19) present the third channel of longitudinal excita-
tions. Namely, there is a two-spin-wave creation/annihilation
process at frequency ω(q) = ε1p + ε2p−q which corresponds
to creation or annihilation of one acoustic and one exchange
transverse mode. This channel remains in force even in the

absence of thermal excitations, i.e., when n1(ε1p) ∼ 0 and/or
n2(ε2p) ∼ 0.

All listed mechanisms of the longitudinal spin excitations
remain valid in the high-loop approximation, too. Indeed,
calculation of the functions Q(q) and 
(q) leads us to
the final expressions given by Eqs. (B3) and (B4), respec-
tively, in Appendix B. Analyzing these functions, we see
that all conclusions made above remain in force. Thus,
the structure of the denominator D(q,ω) and, in particular,
the equation ReD(q,ω) = 0 that determines the dispersion
law point to a strong renormalization of longitudinal spin
excitation frequency due to a few virtual transverse spin wave
creation/annihilation processes. Accordingly, as will be shown
below, the energy of longitudinal spin vibration strongly differs
from a simple algebraic sum of acoustic and/or exchange mode
energy.

Let us now examine Eq. (18) more closely. The main
physics can be captured in a long-wave limit (ak) � 1.
Within this approximation the energy of transverse spin wave
excitations reads [see Eqs. (A6) and (A7)]

ε1k = D(ak)2, D = 2
b1b2

b1 − b2
J0, (20)

and

ε2k = (b1 − b2)J0 + D(ak)2 (21)

for in-phase and antiphase precession of sublattice magnetiza-
tion, respectively. Here we used the quadratic expansion when
evaluating the quantity J0 − Jk ≈ zJ (ak)2 = J0(ak)2 (here z

is the number of nearest neighbors, and a stands for the lattice
spacing).
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As already mentioned, the poles of χzz(q,ω) define the
energy of longitudinal excitations in the system. Due to
rather complex dependence of the function on frequency, we
shall consider real and imaginary parts of D(q,ω) only in
some limiting cases. Namely, we investigate this function
near the singularities of �(q), 
(q), and B(q). That is
when one of the equations ω(q) = ε1p − ε1p−q, or ω(q) =
ε2p − ε2p−q, or ω(q) = ε1p + ε2p−q is fulfilled, i.e., when the
related virtual two-spin-wave creation/annihilation processes
are most effective. For reasons which will be explained
below, we will call the branch of longitudinal excitations due
to creation and annihilation of the same (both acoustic or
both exchange) spin waves the “acoustic” longitudinal spin
excitations; we will call the branch of longitudinal excitations
due to creation and annihilation of different (one acoustic
and one exchange) transverse spin waves the “exchange”
longitudinal spin excitations.

A. Acoustic longitudinal spin excitations

Let us start with the singularity in χzz(q,ω) due to
virtual processes of creation and annihilation of two spin
waves with in-phase or antiphase sublattice magnetization
precession (the first and second channels of longitudinal
excitations). Quantitative analysis given in Appendix C shows
that these processes will provide the main contribution in the
denominator D(q,ω) if the parameter

a± = q

2
± ω

2Dq
(22)

is small enough, i.e., |a±| � 1. (Hereinafter we suppose that
the conventional analytic continuation is made, i.e., iωn →
ω + iδ.) In this approximation, i.e., ignoring the third channel,
after simple algebra, the real and imaginary parts of expression
(18) can be written as

Re D(q,ω) ≈ 1 − Jq
b2

1b
2
2

(b1 − b2)2
{2 Re(λ+

1 + λ−
1 − λ+

2 − λ−
2 )

−Jq(b1 + b2)2[Re(λ+
1 + λ−

1 ) Re(λ+
2 + λ−

2 )

− Im(λ+
1 + λ−

1 ) Im(λ+
2 + λ−

2 )]}, (23)

Im D(q,ω) ≈ −Jq
b2

1b
2
2

(b1 − b2)2
{2 Im(λ+

1 + λ−
1 − λ+

2 − λ−
2 )

−Jq(b1 + b2)2[Re(λ+
1 + λ−

1 ) Im(λ+
2 + λ−

2 )

+ Im(λ+
1 + λ−

1 ) Re(λ+
2 + λ−

2 )]}. (24)

The explicit form of the real and imaginary parts of additional
functions λ±

i = λ±
i (q,ω) [(C1)–(C3)] introduced here are

presented in Appendix C. After simple but cumbersome
calculations (some details can be found in Appendix C),
we obtain for the leading part of the longitudinal spin
susceptibility

χzz(q,ω) ∼ i
(b1 − b2)4

b2
1b

2
2

(
J0

Jq

)2
N (q,ω)(

ω2 − �2
res

)(
ω2 − �2

dif

) ,

(25)

where the characteristic frequencies are

�2
res(dif)/(Dq)2 = 6 + iA(T )

±
{

[6 + iA(T )]2 − 3π
(b1 − b2)2

b1b2
[π

− i6(b1 + b2)]arctg

(
2b1b2

(b1 − b2)2

)}1/2

,

(26)

where

A(T ) = π (b1 + b2)

[
1 + 3

(b1 − b2)2

4b1b2
arctg

(
2b1b2

(b1 − b2)2

)]
.

In particular, in a temperature region near the Curie one,
when b1 ≈ b2 and is small, the expressions for longitudinal
vibrations acquire a simple form,

�res ≈ 3.46Dq + iγ (q,T ),
(27)

γ (q,T ) ∼ 3

2
π2 (b1 + b2)2

b1b2
Dq.

For the diffusive mode, one obtains

�dif ≈ 0.8π
(b1 − b2)√

b1b2
Dq{a(T ) − ic(T )}1/2, (28)

where

a(T ) = 6π
1 − (b1 + b2)2

36 + π2(b1 + b2)2
,

c(T ) = (b1 + b2)
36 + π2

36 + π2(b1 + b2)2
.

Thus, in the (q,ω) region where the condition |a±| � 1
is fulfilled, the function χzz(q,ω) possesses two types of
resonances. There is a peak which characterizes a preces-
sionlike motion with the frequency ±�res ∼ Dq and damping
γ (q) ∼ Dq; both these functions linearly depend on the wave
vector (the acoustic branch longitudinal spin excitations). This
allows us to affirm that in the system the wavelike vibrations
of spin longitudinal components exist, although with strong
attenuation. At the same time, there is also a quasidiffusive pole
at ±i�dif , i.e., the quasirelaxation mode connected to diffusion
of longitudinal fluctuations, which forms the central peak in
the spectral function 1

ω
Im χzz(q,ω). Thus, in the frequency

and wave vector region under consideration, Eq. (22), the
ferrimagnet spectral function behavior is similar to those in
the case of a ferromagnet [21].

The susceptibility and the longitudinal spin fluctuations
at temperature close to TC can be directly determined by
inelastic scattering of polarized neutrons. In these experiments,
a spin polarization analysis of the data gives the possibility to
distinguish contributions from longitudinal and transverse spin
modes (for more details see, e.g., [29] and references therein).

Note here, to avoid confusion, that applicability the results
obtained in the (q,ω) area for the frequency is determined by
the conditions ω(q) ≈ ε1p − ε1p−q and ω(q) ≈ ε2p − ε2p−q,
while a restriction on the wave vector is conditioned by
proximity to the hydrodynamic regime, where the physics of
the magnetization dynamics is determined by the magnetiza-
tion conservation laws [30]. As is already known, the RPA
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results remain valid beyond the hydrodynamic regime, i.e.,
when the wave vector is larger than the inverse correlation
length ξ : q > 1/ξ ∼ (1 − T/TC)1/2, and, of course, beyond
the critical region (for more details see, e.g., Refs. [21,25]).
(A second-order phase transition takes place in the system at
a temperature TC = 1/3[S1S2(S1 + 1)(S2 + 1)]1/2J0 [20].)

B. Exchange longitudinal spin excitations

We are now in a position to consider a central result of the
paper, that is, longitudinal excitations due to virtual creation
and annihilation transverse spin waves of different branches
(the third channel of longitudinal excitations). Quantitative
analysis (see Appendix C for details) indicates that these
virtual processes will cause a singularity in χzz(q,ω) if the
parameter

b± = q

2
+

[
q2

4
+ (b1 − b2)J0 ± ω

2D

]1/2

(29)

is small enough, i.e., |b±| � 1. In this approximation, after
simple algebra, the leading part of the denominator (18) that
determines the dispersion law and damping of longitudinal
spin excitations can be written as

D(q,ωq) ≈ 1 − 2Jq�(q,ωq). (30)

Calculations show that now the leading part of the longitudinal
spin susceptibility reads

χzz(q,ω) ∼ (b1 − b2)4

2b2
1b

2
2

J0

Jq

N (q,ω)

±ω + �exc + iγexc
. (31)

The quantity �exc = �exc(q,T ) should be considered the fre-
quencies of collective vibrations of magnetization longitudinal
components, which in this (q,ω) region are described by the
following expression (see Appendix C):

�exc(q,T ) ≈ (b1−b2)J0

[
1+2 ln

T

(b1 − b2)J0
+ π2

2
+f (T )q

]
,

(32)

where

f (T ) ≈ 4
J 2

0

T Jq

+ ln

[
(b1 + b2)J0 + D

T
Dq

]
− 2

(
1 + 3D

4T

)
.

(33)

By analogy to the terminology for the transverse spin wave
oscillations, we will call this type of longitudinal excitation
the exchange longitudinal spin excitations. Note that the ex-
change longitudinal mode is energetically above the exchange
mode of the transverse spin wave (21) at the same temperature
and wave vector, and liner depends on q.

For the damping of the exchange longitudinal mode, we
obtained

γ (q,�exc) ∼ 2πb1b2
J 2

0

T

{
1 − κ2

0 + T

D
ln

[
(b1 − b2)J0 + D

(b1 − b2)J0 + Dκ2
0

]
+ T

D
ln

(
κ2

0

[
4b1b2

(b1 − b2)2

]2)}
, (34)

where

κ2
0 = (b1 − b2)2

4b1b2

[
2 ln

T

(b1 − b2)J0
+ π2

2
+ f (T )q

]
. (35)

Thus, the ratio γ (q,�exc)/�exc(q,T ) is approximately
γ (q,�exc)/�exc(q,T ) ∼ b1b2

b1−b2

J0
T

, and at low temperature T <

J0 it is large enough. But at T ∼ TC b1 � S1, b2 � S2,
and γ (q,�exc)/�exc(q,T ) ∼ (b1/S1)(b2/S2)

b1−b2
� 1 is smaller than

unity. This allows us to affirm that in a ferrimagnet wavelike
excitations of longitudinal components of magnetization exist,
although with strong attenuation at low temperature.

As follows from direct examination of the functions Q(q)
[Eq. (B3)] and 
(q) [Eq. (B4)], the physical mechanism of
the spin longitudinal excitations remains valid in the high
approximation, too. We investigated these functions in the
frequency ω and momentum q domains where parameters
(22) and (29) are small enough and found that the account
of the two-loop diagrams has not caused principal corrections
to the energy and damping of longitudinal spin excitations.
(The related analysis will be published elsewhere.)

V. DISCUSSION

It is now commonly accepted that the ultrafast magneti-
zation process proceeds with several important characteristic
time scales [1,31–33]: (i) a femtosecond demagnetization,
(ii) a picosecond recovery, and (iii) a nanosecond magneti-

zation precession and relaxation, traditionally characterized
by the ferromagnetic resonance frequency and the Landau-
Lifshitz-Gilbert (LLG) damping parameter. It is also generally
recognized that the physics of magnetization changes on
femtosecond time scales requires understanding the role of dif-
ferent subsystems (photons, phonons, electrons) in the angular
momentum transfer [1,31,32], too. Concerning multisublattice
magnetic materials, an additional question arises about the
effect which the magnetization or angular momentum com-
pensation point plays in ultrafast longitudinal magnetization
dynamics (see, e.g., [7,8] and references therein).

The first attempts to describe longitudinal magnetization
dynamics in two-sublattice systems have been proposed
recently [13,14,16,17]. Based on the existing experimental
results and from a general point of view, it was suggested
that the longitudinal relaxation and the transverse relaxation
(the LLG damping) are independent quantities. That is, as
in the case of nanoscale magnetism (see reviews [34,35]
and references therein), there is a longitudinal relaxation
time which fits a direct path to the thermal bath and a
so-called transverse time which represents scattering into
the transverse magnetization components. The main feature
of the phenomenological dynamic equations proposed that
made them suitable for the ultrafast magnetization dynamics
is the presence of a longitudinal relaxation term coming
from the strong exchange interaction between spins. Since
the exchange fields are large (10–100 T), the corresponding
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characteristic longitudinal relaxation time scale is of the order
of 10–100 fs and thus manifests itself in the ultrafast processes.

On the other hand, it is obvious that for exhaustive
understanding of the underlying physics of ultrafast magne-
tization dynamics a microscopic description of longitudinal
magnetization dynamics in the equilibrium state of the system
is strongly required. Distinctive features of the longitudinal
dynamics in the multisublattice magnet equilibrium state have
to be a datum point in attempts to understand the dynamics of a
ferrimagnet after femtosecond laser pulse heating far beyond
an equilibrium state. Keeping in mind that the Heisenberg
model deals exclusively with spin degrees of freedom, let us
make some estimation concerning the suggestions made in the
phenomenological models with the same approximation.

In the models in Refs. [16,17] the authors suggest that
the dynamics of the length of the sublattice magnetizations
is pertinent to the time scale of the exchange interaction and
that on this time scale the conventional transverse dynamics of
the angular momentum is negligible. Particularly, in this ap-
proximation longitudinal exchange relaxation in magnets with
only one sublattice is not possible. However, following our
consideration, in two-sublattice magnets there are additional
equal-in-value channels of the longitudinal mode relaxation
by which energy is scattered into the transverse magnetization
component. Note also that according to Izyumov et al. [21], in
one-sublattice magnets a longitudinal spin mode relaxes due
to a virtual process of creation and annihilation of ordinary
spin waves, too.

In Ref. [11] the authors, using conventional suggestions
about the spin wave spectrum in a ferrimagnetic system,
discuss the role which the magnetization or angular momentum
compensation point plays in thermally induced magnetization
switching. The authors consider the classical spin Heisenberg
model, and thus, the thermal equilibrium distribution of the
spin fluctuations rests on the classical limit (see the Supple-
mentary Information in [11]). Based on these suggestions, the
authors conclude that the switching is caused by the excitation
of two-magnon bound states.

However, the microscopic calculation using the diagram
technique for spin operators [36] shows that near the angular
momentum compensation point TL the system behavior is
not the classical one. In particular, the energy of the in-
phase precession of the magnetizations of the sublattices
becomes higher than that of the out-of-phase precession; near
TL fluctuations in the weak sublattice magnetization have
a significant influence on the resonance properties of the
system, with different temperature behaviors of the in-phase
and out-of-phase precessions of the sublattice magnetization.
Also, the occupation numbers for the acoustic magnons
become large, and a finite number of spin operator states
(2S + 1) takes on special significance. In other words, the
difference in quantum nature of Bose and spin operators is
fundamental for understanding the magnetization dynamics in
the neighborhood of the compensation points, too.

Based on our results, thermally induced magnetization
switching most likely comes from emission/absorption of two
transverse spin waves which are not in bound states. However,
we stress that in this paper we consider a ferrimagnet without a
compensation point. A ferrimagnetic system with compensa-
tion points requires special consideration, in particular because

at high enough temperature a weak sublattice dynamics is,
in fact, a paramagnetic precession of magnetization in the
exchange field of a strong sublattice (for more details see [36]
and reference therein). Note in this connection that the case of
a compensated antiferromagnet (S1 = S2, g1 = g2) also calls
for a special analysis in view of the strong dependence of its
properties on the anisotropic interactions.

In conclusion, in this paper, in the framework of a quantum-
mechanical approach, the general expression for longitudinal
spin susceptibility χzz(q,ω) of a two-sublattice Heisenberg
ferrimagnet was obtained with the aim to overcome limitations
typical of the phenomenological approaches. Our microscopic
analysis utilizes the diagram techniques for the spin operators,
which formally yield analytic expressions that are valid over
the entire temperature range of the magnetically ordered state
of the system. Namely, the results are applicable in the (q,ω)
space beyond both hydrodynamical and critical regimes.

Strong renormalization of the magnetization longitudinal
vibration due to a few channels of virtual creation and anni-
hilation of transverse spin waves has been found. Videlicet,
there is a process of creation and annihilation of two spin
(acoustic) waves at frequencies ω(q) = (ε1k − ε1k±q) which
corresponds to in-phase sublattice magnetization precession
and is in close analogy to a ferromagnet case. There is also
a channel of two spin wave excitations with the energies
ε2k and ε2k±q, which correspond to out-of-phase sublattice
magnetization precession (exchange spin waves). The third
channel is a two-spin-wave creation/annihilation process at
frequency ω(q) = (ε1k + ε2k±q). (In all these processes the
wave vector k is a variable.) The first two channels are
controlled by the occupation factor determined through the
spin wave Bose distribution function. However, the processes
of creation or annihilation of one acoustic and one exchange
mode (the third channel) remain effective even in the absence
of transverse excitations, i.e., when n(εk) → 0, and, in our
opinion, most likely provide the main contribution to the
thermally induced magnetization reversal.

We have shown that the spectrum of longitudinal excitations
consists of a quasirelaxation mode forming a central peak
in χzz(q,ω) and two (acoustic and exchange) precessionlike
modes. As the main result, it is predicted that both acoustic
and exchange longitudinal excitations are energetically above
similar modes of transverse spin waves at the same temperature
and wave vector. The existence of such a high-energy exchange
longitudinal mode reveals the possibility for a new form
of excitation behavior in ferrimagnetic materials. Also, our
analysis indicates that in a temperature region near the Curie
one the main contribution to the longitudinal magnetization
relaxation comes from the high-frequency spin waves. This
process occurs due to a strong exchange field. As a result, the
longitudinal relaxation time (the inverse longitudinal relax-
ation rate) is much faster than transverse spin wave damping.

The existing experimental results indicate that in a ferri-
magnetic system the ultrafast magnetization reversal occurs
due to intrinsic material properties, but so far the microscopic
mechanism responsible for the reversal has not been identified.
We hope that the results obtained in this paper within a consis-
tent microscopic theory will be important for understanding the
physics of nonequilibrium magnetic dynamics under the effect
of ultrafast laser pulses in multisublattice magnetic materials.
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APPENDIX A: TRANSVERSE GFS IN THE
HARTREE-FOCK APPROXIMATION

To calculate the transverse GFs, Gij (q) =
−1/2〈〈T̂ S+

ig|S−
j f〉〉|q,ω (i,j = 1,2), we use the Larkin

equation derived earlier in the framework of the diagrammatic
technique for spin operators (see, for instance, [22,23]). In
that case, each connected diagram for the transverse GFs
can be represented in the form of single-cell blocks 	ij (q)
joined by the interaction lines Jq (the Fourier transform
of the exchange interaction). It can be shown that the total
(infinite) graph series for transverse GFs of a two-sublattice
ferrimagnet obeys the system of equations

Gii(q) = 	ii(q) + 	ii(q)JqGji(q),

Gji(q) = 	ji(q) + 	jj (q)JqGii(q).

In terms of the diagrammatic technique, the quantity 	ij (q)
should be called the part uncuttable across a line of interaction
Jq . All “cuttable” parts are compressed into the second term on
the right-hand sides of these equations. Dealing with transverse
spin wave excitations, we are interested in summation of
graphical series for the GFs in the Hartree-Fock approxima-
tion. In this approximation, a graphical representation of the
systems of equations for the transverse G11(q) and G12(q)
and also G22(q) and G21(q) GFs are shown in Figs. 2(a)
and 2(b), respectively. Here thick (thin) lines represent dressed
[undressed, Kii(q)] GFs; the wavy line corresponds to the
interaction Jq. The open points indicate vertices corresponding
to the operators Sz

i (i = 1,2). These equations in the Fourier
transformed form read

G11(q) = b1K11(iωn) + b1K11(iωn)JqG21(q), (A1)

G21(q) = −b2K22(iωn)JqG11(q). (A2)

The system of equations for the next pair of coupled functions,
G22(q) and G12(q), possesses a very similar structure. Here

K11(iωn) = 1/(iωn + y0) and K22(iωn) = 1/(iωn − x0) are
(undressed) GFs in the mean-field approximation. We used
the notations b1 ≡ b1(βyS1) = 〈Sz

1〉(0) and b2 ≡ b2(βxS2) =
〈Sz

2〉(0), which are the magnetization of the first and second
sublattices, respectively.

Using these equations, for the GFs describing transverse
spin precessions we obtained

G11(q) = b1K
−1
22 (iωn)

(iωn + ε1q)(iωn − ε2q)
, (A3)

G12(q) = G21(q) = − b1b2Jq

(iωn + ε1q)(iωn − ε2q)
, (A4)

G22(q) = − b2K
−1
11 (iωn)

(iωn + ε1q)(iωn − ε2q)
. (A5)

Here and below, for shorthand notation, we introduce the
designation εi(q) = εiq. These GFs describe the propagation
of spin waves with the momentum q and energy

ε1q = − 1
2 (b1 − b2)J0 + 1

2

[
(b1 − b2)2J 2

0

+4b1b2
(
J 2

0 − J 2
q

)]1/2
(A6)

for an acoustic spin wave with an in-phase precession of the
sublattice magnetization and energy

ε2q = 1
2 (b1 − b2)J0 + 1

2

[
(b1 − b2)2J 2

0

+4b1b2
(
J 2

0 − J 2
q

)]1/2
(A7)

for an exchange spin wave with an antiphase precession of
the sublattice magnetization. In a long-wave limit (aq) � 1,
the asymptotic expansions provide expressions (20) and (21),
respectively.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE
LOOP DIAGRAMS

To calculate the loop diagrams �(q), 
(q), B(q), Q(q),
and 
(q), where q = {q,iωn}, we substitute the spin wave GFs
(A3)–(A5) into Eqs. (10)–(14) and sum up over the discrete
Matsubara frequencies. Simple but cumbersome calculations
give, for the function �(q), analytical expression (19). For
functions 
(q), B(q), Q(q), and 
(q) similar calculations
yield


(q) = b2
1

N

∑
p

{
ε1p − x

ε1p + ε2p

ε1p−q − x

ε1p−q + ε2p−q

n1(ε1p) − n1(ε1p−q)

iωq − ε1p + ε1p−q
− ε2p + x

ε1p + ε2p

ε1p−q − x

ε1p−q + ε2p−q

1 + n1(ε1p−q) + n2(ε2p)

iωq + ε2p + ε1p−q

+ ε1p − x

ε1p + ε2p

ε1p−q + x

ε1p−q + ε2p−q

1 + n1(ε1p) + n2(ε2p−q)

iωq − ε1p − ε2p−q
+ ε2p + x

ε1p + ε2p

ε2p−q + x

ε1p−q + ε2p−q

n2(ε2p−q) − n2(ε2p)

iωq + ε2p − ε2p−q

}
, (B1)

B(q) = b2
2

N

∑
p

{
ε2p − y

ε1p + ε2p

ε2p−q − y

ε1p−q + ε2p−q

n2(ε2p−q) − n2(ε2p)

iωq − ε2p + ε2p−q
− ε1p + y

ε1p + ε2p

ε2p−q − y

ε1p−q + ε2p−q

1 + n1(ε1p) + n2(ε2p−q)

iωq − ε1p − ε2p−q

− ε2p − y

ε1p + ε2p

ε2p − y

ε1p−q + ε2p−q

1 + n1(ε1p−q) + n2(ε2p)

iωq + ε2p + ε1p−q
+ ε1p + y

ε1p + ε2p

ε1p−q + y

ε1p−q + ε2p−q

n1(ε1p) − n1(ε1p−q)

iωq + ε1p − ε1p−q

}
, (B2)
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Q(q) = b2
1b2

N

∑
p

J 2
p

ε1p + ε2p

{
ε1p−q − x

ε1p−q + ε2p−q

(
n1(ε1p) − n1(ε1p−q)

iωq − ε1p + ε1p−q
+ 1 + n1(ε1p−q) + n2(ε2p)

iωq + ε2p + ε1p−q

)

+ ε1p−q + x

ε1p−q + ε2p−q

(
1 + n1(ε1p) + n2(ε2p−q)

iωq − ε1p − ε2p−q
+ n2(ε2p) − n2(ε2p−q)

iωq + ε2p − ε2p−q

)}
, (B3)


(q) = b1b
2
2

N

∑
p

J 2
p

ε1p + ε2p

{
ε2p−q − y

ε1p−q + ε2p−q

(
1 + n1(ε1p) + n2(ε2p−q)

iωq − ε1p − ε2p−q
− n2(ε2p−q) − n2(ε2p)

iωq − ε2p−q + ε2p

)

+ ε1p−q + y

ε1p−q + ε2p−q

(
1 + n1(ε1p−q) + n2(ε2p)

iωq + ε1p−q + ε2p
+ n1(ε1p) − n1(ε1p−q)

iωq − ε1p + ε1p−q

)}
. (B4)

Here n1(ε1p) and n2(ε2p) are the Bose distribution functions for excitations with in-phase and out-of-phase sublattice oscillations,
respectively (i.e., acoustic and exchange spin waves).

APPENDIX C: CALCULATION OF THE LOOP DIAGRAMS

To find the asymptotic of loop diagrams �(q), 
(q), B(q), Q(q), and 
(q) we will use the approximation ε1p + ε2p ≈
(b1 − b2)J0, ε1p − x ≈ −b2J0, ε2p + x ≈ b1J0, ε2p − y ≈ −b2J0, and ε1p + y ≈ b2J0 in Eqs. (19) and (B1)–(B4) for the factors
at the singularities. Then the quantities on the left-hand sides of Eqs. (19) and (B1)–(B4) can be expressed in terms of the
universal functions defined as

λi(q,ω) = 1

N

∑
p

ni(εip)

ω − εip + εip−q + iδ
, (C1)

λ0(q,ω) = 1

N

∑
p

1

ω − ε1p − ε2p−q + iδ
, (C2)

λ0i(q,ω) = 1

N

∑
p

ni(εip)

ω − εip + εjp−q + iδ
, i �= j, (C3)

where i,j = 1,2. Namely, after simple algebra we can write �(q), Q(q), and B(q) in the form

�(q) = b2
1b

2
2

(b1 − b2)2
(λ+

1 + λ−
1 − λ+

2 − λ−
2 − λ+

0 − λ−
0 − λ+

01 − λ−
01 − λ+

02 − λ−
02),


(q) = b2
1

(b1 − b2)2

{
b2

2(λ+
1 + λ−

1 ) − b2
1(λ+

2 + λ−
2 ) − b1b2(λ+

0 + λ−
0 + λ+

01 + λ−
01 + λ+

02 + λ−
02)

}
,

B(q) = b2
2

(b1 − b2)2

{
b2

1(λ+
1 + λ−

1 ) − b2
2(λ+

2 + λ−
2 ) − b1b2(λ+

0 + λ−
0 + λ+

01 + λ−
01 + λ+

02 + λ−
02)

}
,

with similar expressions for Q(q) and 
(q) (not shown here). We also introduce here the shorthand notation λ±
i = λi(q, ± ω).

The real part Reλi(q,ω) is defined by Eqs. (C1)–(C3), implying that its principal value has been taken for this case. The
imaginary part of λi(q,ω) reads

Im λi(q,ω) = − π

N

∑
p

ni(εip)δ(ω − εip + εip−q), (C4)

Im λ0(q,ω) = − π

N

∑
p

δ(ω − ε1p − ε2p−q), (C5)

Im λ0i(q,ω) = − π

N

∑
p

ni(εip)δ(ω − εip + εjp−q), i �= j. (C6)

The main physics can be captured in a long-wave limit, (ak) � 1, when the spin wave energies possess a quadratic dispersion
law, Eqs. (20) and (21). Within this approximation, integration over the angle between the momentums p and q leads us to an
intermediate result for the real parts of (C1)–(C3):

Re λi(a
±) = 1

2Dq

∫ 1

0
ni(εip)pdp ln

∣∣∣∣p + a±

p − a±

∣∣∣∣, (C7)

Re λ0(b±) = 1

2Dq

∫ 1

0
pdp ln

∣∣∣∣p2 − pq + b±

p2 + pq + b±

∣∣∣∣, (C8)

Re λ0i(b
±) = 1

2Dq

∫ 1

0
ni(εip)pdp ln

∣∣∣∣p2 + pq + b±

p2 − pq + b±

∣∣∣∣, i �= j. (C9)
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Here we introduce the parameters a± = q

2 ± ω
2Dq

and b± = q

2 + [ q2

4 + (b1−b2)J0±ω

2D
]
1/2

. Like for the imaginary parts, we obtain

Im λi(a
±) = π

2Dq

∫ 1

|a±|
ni(εip)pdp, (C10)

Im λ0(b±) = π

2Dq

∫ 1

|b±|
pdp = π

4Dq
[1 − (b±)2], (C11)

Im λ0i(b
±) = π

2Dq

∫ 1

|b±|
ni(εip)pdp, i �= j. (C12)

Below we estimate these integrals for the regimes when the parameter |a±| or |b±| is small and one can find dominant contributions
in expressions (C7)–(C12).

(i) |a±| � 1. If |a±| is small, which follows from expressions (C7) and (C10), the functions λ±
1 and λ±

2 give the main
contribution. The required asymptotic expansions are found to be

Re(λ+
1 + λ−

1 ) ≈ T

D2q

2b1b2

(b1 − b2)2

[
qarctg

2b1b2

(b1 − b2)2
− 2b1b2

3(b1 − b2)2

(
q2 + ω2

D2q2

)]
,

Re(λ+
2 + λ−

2 ) ≈ T

D2q

(
π2

4
− q

)
,

Im(λ+
1 + λ−

1 ) ≈ πT

2D2q

2b1b2

(b1 − b2)2

[
arctg

2b1b2

(b1 − b2)2
− q

2b1b2

(b1 − b2)2

]
,

Im(λ+
2 + λ−

2 ) ≈ πT

2D2q

[
3 − 2q + 1

4

(
q2 + ω2

D2q2

)]
.

Using these asymptotes, the main contribution to the longitudinal susceptibility takes the form of expression (25), where the
characteristic frequencies are determined by Eq. (26).

(ii) |b±| � 1. Now the functions λ±
0 and λ±

0i give a substantial contribution. In this (ω,q) region the denominator, Eq. (18),
reads

D(q,ωq) ≈ 1 − 2Jq�(q,ωq) = 1 + 2Jq
b2

1b
2
2

(b1 − b2)2
(λ+

0 + λ−
0 + λ+

01 + λ−
01 + λ+

02 + λ−
02). (C13)

The real parts of the functions λ±
0 and λ±

0i are equal to

Re(λ+
0 + λ−

0 ) ≈ −3/4D,

Re(λ+
01 + λ−

01) ≈ T

D2q

[
q ln

(
D + (b1 − b2)J0

T

)
− 2 ln

(b1 − b2)J0

T
+ (b1 − b2)J0 ± ω

(b1 − b2)J0

]
,

Re(λ+
02 + λ−

02) ≈ T

D2q

(
π2

4
− q

)
.

For the excitation damping (the pole imaginary part on the mass surface) we have

γ (q,�exc) ≈ (b1 − b2)Jq
2D2q

T
Im(λ+

0 + λ−
0 + λ+

01 + λ−
01 + λ+

02 + λ−
02).

For the imaginary parts (C11) and (C12) with ω = �exc, calculations yield

Im λ0(q,�exc) ∼ π

2Dq

[
1 − κ2

0

]
,

Im λ01(q,�exc) ∼ π

2Dq

T

D
ln

[
(b1 − b2)J0 + D

(b1 − b2)J0 + Dκ2
0

]
,

Im λ02(q,�exc) ∼ π

2Dq

T

D
ln

{
4b1b2

(b1 − b2)2

[
2 ln

T

(b1 − b2)J0
+ π2

2
+ f (T )q

]}
,

where the functions κ2
0 and f (T ) are determined by the analytical forms (35) and (33), respectively. Summarizing the results, we

obtain the characteristic frequencies defined by Eqs. (32) and (34).
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