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a b s t r a c t

We theoretically investigate the dispersion and polarization properties of the electro-
magnetic waves in a multi-layered structure composed of a magneto-optic waveguide on
dielectric substrate covered by one-dimensional dielectric photonic crystal. The numerical
analysis of such a complex structure shows polarization filtration of TE- and TM-modes
depending on geometrical parameters of the waveguide and photonic crystal. We
consider different regimes of the modes propagation inside such a structure: when guiding
modes propagate inside the magnetic film and decay in the photonic crystal; when they
propagate in both magnetic film and photonic crystal.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The optic waveguides based on the multilayered photonic structures have been in the focus of intense investigations
during last decades. The theory of Bragg reflectionwaveguides has been proposed in Refs. [1,2] in 1976. It has been shown that
waveguides utilizing Bragg reflection at the boundaries can support confined and lossless propagating modes in regions of
low refractive index. Thewaveguide propagation of the electromagnetic waves (EMWs) in nonmagneticmultilayered systems
of different geometries, including photonic crystals (PCs) [3], has been reported by many authors [4e6]. The mode selection
mechanism is realized by using an asymmetric quasi-one-dimensional Bragg reflection waveguide and shown to be effective
to achieve high side-mode suppression ratio [7]. The guided modes of a slab waveguide which consists of a low-index layer
sandwiched between two PCs are analyzed theoretically using a ray-optics model in Refs. [4,5]. It has been shown that the
guided modes of the waveguide operate inside the overlapped photonic band gaps of two Bragg reflectors and each guided
mode in such a waveguide has two cutoff points, and the dispersion curves of the guided modes are fragmentary and, as a
result, the waveguide can be designed to support only the high-order modes instead of the low-order modes. The theoretical
investigations of the quarter-wave Bragg reflection waveguide are presented in Ref. [6]. An analytical solution to the mode
dispersion equation is derived, and it is shown that such a waveguide is polarization degenerate, although the TE- and TM-
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mode profiles differ significantly as the external Brewster's angle condition in the cladding is approached. The aperiodic Bragg
reflection waveguides have been also studied in Ref. [8].

The structures combining properties of waveguides and PCs are proposed for many applications. For example, they are
used in fabrication of an omnidirectional reflector [9], a high efficiency all-optical diode [10], accelerators [11], mechanically
tunable aircore filters [12], polarization splitters [13]. As well the similar structures can be used in the nonlinear regimes to
optimize a soliton propagation [14], and for the phase matching for frequency conversion [15]. Also an asymmetric Bragg
reflection waveguide for a single-mode laser is studied in Ref. [4]. The aperiodic Bragg reflection waveguides have been also
investigated to demonstrate a dispersion blue-shift [8]. Effects of linear chirp either in thickness or in refractive index of the
cladding layers on the propagation characteristics of one-dimensional photonic band gap planar Bragg reflectionwaveguides
are reported in Ref. [16].

However, in the aforementioned papers the attention has been paid to nonmagnetic systems only. The magneto-optic
(MO) waveguides and PCs are widely used in modern integrated optics [17] and magneto-photonics [18,19]. Thus, the
combined structures based on the MO waveguide and PCs can open new opportunities in possible application. Until recently,
to the best of our knowledge, there was no any publication devoted to the MOwaveguides based on the PCs. Last year the MO
bilayer sandwiched between two dielectric nonmagnetic Braggmirrors in combinationwith plasmonic crystal was studied in
Ref. [20]. It was shown that the plasmonic pattern allows excitation of the hybrid plasmonic-waveguide modes localized in
the dielectric Bragg mirrors of the magnetic PC or waveguide modes inside its microresonator layer. These modes give rise to
the additional resonances in the optical spectra of the structure and to the enhancement of theMO effects [20]. In Refs. [21,22]
the studies of the waveguide modes of one-dimensional magnetic PC with in-plane magnetized layers and nonmagnetic PC
with a cladding magnetic layer on the top of the structure were reported.

In this paper, we investigate theoretically a complex waveguide structure composed of MO slab on a dielectric substrate
and covered by one-dimensional non-magnetic dielectric PC. In contrast to the aforementioned papers, where the PCs were
used as the waveguide claddings to affect the EMWs spectra, we focus on the case when the PC acts as a guiding system as
well as the MO slab. The paper is organized as follows. In Section 2, we present the description of the system and provide the
analytical calculations of the dispersion of the eigenmodes propagating in the aforementioned complex waveguide structure
using the transfer matrix method. In Section 3, we discuss different guiding regimes of the normal EMWs and show results of
the numerical calculations of the dispersion dependencies. In Section 4, the Conclusions, we summarize the obtained results.
2. Model and methods

Let us consider the complex MO waveguide system consisting of the magnetic yttrium-iron garnet (YIG) film Y3Fe5O12 of
thickness L1 on the thick dielectric silicon oxide SiO2 substrate and covered by a one-dimensional non-magnetic dielectric PC
on the base of gadolinium-gallium garnet (GGG) Gd3Ga5O12 and titanium oxide TiO2 layers. Thus the system has the structure
SiO2/YIG/(GGG/TiO2)N/vacuum with the layers oriented parallel to (xy)-plane, the z-axis is perpendicular to the interfaces, as
shown in Fig. 1. The total thickness of the PC, consisting of N bilayers of GGG/TiO2, is L2 ¼ Nd, where d is the PC's period:
d ¼ d1 þ d2 (d1 and d2 are the thicknesses of GGG and TiO2 layers, respectively). It is assumed that the complex waveguide
structure is of a large extent along the x- and y-directions which is sufficient to neglect the corresponding boundary effects in
these directions. We consider the in-plane magnetization of the YIG layer with themagnetization vectorM directed along the
y-axis (see Fig. 1).

Theoretical analysis of the dispersion of normal EMWs in a bigyrotropic MO waveguide was done in Refs. [23,24]. For
obtaining the dispersion equation we use the method described in Ref. [22] in combination with the 4 � 4 transfer matrix
method [25].

We assume that all the layers of the system (YIG, GGG and TiO2) can guide the electromagnetic radiationwhich propagates
along the x-axis and exponentially decays in depth of SiO2 substrate and vacuum along the z-axis. Propagation of the EMWs in
each medium constituting the complex waveguide structure is described by the Maxwell's equations [26]:

rot EðiÞ þ 1
c
vВðiÞ

vt
¼ 0; rot HðiÞ � 1

c
vDðiÞ

vt
¼ 0; (1)

with the corresponding constitutive equations for each medium

DðiÞ ¼ bεðiÞEðiÞ; ВðiÞ ¼ bmðiÞHðiÞ; (2)

where E(i) andH(i) are the electric andmagnetic field vectors, respectively, D(i) and B(i) are the electric andmagnetic induction
vectors, respectively, and the superscripts (i) (i ¼ 0, 1, 2, 3, m) correspond to vacuum, GGG, TiO2, SiO2, and YIG layers,
respectively. In Eq. (2) tensors bεðiÞ and bmðiÞ are the dielectric permittivity and magnetic permeability tensors of the corre-
sponding medium.

In the near infrared regime the cubic YIG is characterized by high transmittivity and exhibits bigyrotropic properties, i.e.,
both bεðmÞ and bmðmÞ tensors contain the off-diagonal components [27]. In the case of Mjjy in linear MO approximation the
tensors bεðmÞ and bmðmÞ of YIG have the following form:



Fig. 1. Schematic of the complex waveguide structure SiO2/YIG/(GGG/TiO2)N/vacuum. The thicknesses of the magnetic YIG waveguide layer and the covering PC
are L1 and L2, respectively, and thicknesses of GGG and TiO2 layers in the PC are d1 and d2, respectively, with d being its period. The thick arrow shows the
magnetization direction in YIG layer.

N.N. Dadoenkova et al. / Superlattices and Microstructures 100 (2016) 45e56 47
bεðmÞ ¼
0@ εm 0 iε0

0 εm 0
�iε0 0 εm

1A; bmðmÞ ¼
0@ mm 0 im0

0 mm 0
�im0 0 mm

1A; (3)

which corresponds to the transverse MO configuration [28].
The non-magnetic dielectrics GGG, TiO2 and SiO2 are also of cubic symmetry and their dielectric tensors are diagonal:bεð1Þ ¼ ε1dij, bεð2Þ ¼ ε2dij, and bεð3Þ ¼ ε3dij, respectively, where dij is the Kronecker's delta. The magnetic permeabilities of non-

magnetic layers are mi ¼ 1.
For the layers of the PC and YIG guiding layers, we write the solution F(i) ¼ {E(i), H(i)} of Maxwell's equations Eq. (1) in the

form of plane waves:

FðiÞðx; z; tÞ ¼ FðiÞeiðbx�utÞ; i ¼ 1;2;m; (4)

where b is a propagation constant of the EMW propagating along the x-axis.
For vacuum and the SiO2 substratewewrite the solution of Eq. (1) in the form of waves, decaying along the z-direction (for

z > L1 þ L2) and along the ez-direction (for z < 0):

Fð0Þa ðzÞ ¼ Fð0Þa eq0ðL1þL2�zÞ;
Fð3Þa ðzÞ ¼ Fð3Þa eq3z;

(5)

2 2 2 2 2 2
where a¼ x, y, z, and q0z ¼ �b þ k0ε0 <0, q3z ¼ �b þ k0ε3 <0 are the z-components of the wavevectors in vacuum and SiO2
substrate, respectively. Here k0¼ u/c is themodulus of wave vector in vacuum, u is the angular frequency of the EMW, and c is
speed of light in vacuum. In the YIG layer in the transverseMO configuration, the electromagnetic radiation propagating along
the x-axis splits into independent TE- and TM-polarized EMWs:

FðmÞ
TE;TM ¼ FðmÞþ

TE;TM eik
TE;TM
mz z þ FðmÞ�

TE;TM e�ikTE;TMmz z; (6)

TE TM
where kmz and kmz are the wavevector z-components of the normal EMWs of TE- and TM-polarizations, respectively:�
kTEmz

�2 ¼ �b2 þ k20
�
nTEYIG

�2
>0;

�
kTMmz

�2 ¼ �b2 þ k20
�
nTMYIG

�2
>0; (7)
where we introduce the effective refractive indices of YIG as�
nTEYIG

�2 ¼ εm

�
m2m � m02

�.
mm;

�
nTMYIG

�2 ¼ mm

�
ε
2
m � ε

02
�.

εm: (8)
Hereinafter FðiÞ±TE;TM ¼ {EðiÞ±y ;HðiÞ±
x } for TE-polarization and FðiÞ±TE;TM ¼ {HðiÞ±

y ; EðiÞ±x } for TM-polarization.
In the GGG and TiO2 layers the electric andmagnetic fields of the propagating EMWs have the form similar to that of Eq. (6)

with replacing the superscript m with 1 for GGG and 2 for TiO2 layers:
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Fð1;2ÞTE;TM zð Þ ¼ Fð1;2ÞþTE;TM eik1;2zz þ Fð1;2Þ�TE;TM e�ik1;2zz: (9)

2 2 2 2 2 2
The corresponding z-components of wavevectors for GGG and TiO2 are k1z ¼ �b þ k0ε1 >0 and k2z ¼ �b þ k0ε2 >0.
At all the interfaces of the complex waveguide structure the tangential components of electric and magnetic fields satisfy

the boundary conditions:

FðiÞx;y

���
z¼zj�0

¼ FðlÞx;y

���
z¼zjþ0

; (10)

where is l, {i, l}¼ {0, 1, 2, 3,m}, and zj (j ¼ 1, 2, 3,…, (Nþ 1)) denote the coordinates of the boundaries between all the layers

of the system. Solving the system of boundary conditions using 4� 4matrix technique, one can connect the amplitudes of the
reflected and transmitted fields:

bA0

 
Eð0Þþy

Hð0Þþ
y

!
¼ bT bA3

 
Eð3Þ�y

Hð3Þ�
y

!
; (11)

where the general transfer matrix bT ¼ bA2
bE2ðd2ÞbS21bE1ðd1ÞbTN�1bS1mbEmðL1ÞbA�1

with bT 0 ¼ bS21bE2ðd2ÞbS21bE1ðd1Þ; being the one
0 m

period transfer matrix, where the matrices bS12 ¼ bA�1
1
bA2 ¼ bS�1

21 connect the field amplitudes at the boundaries of the media 1

and 2 (GGG and TiO2 sublayers), and similarly the matrix bS1m ¼ bA�1
1
bAm connects the fields magnitudes at GGG/YIG boundary.

The diagonal matrices bEmðL1Þ and bEjðdjÞ (j ¼ 1, 2), represent the phase incursions within the corresponding layers:

bEmðL1Þ ¼ diag
�
eik

TE
mzL1 ; e�ikTEmzL1 ; eik

TM
mz L1 ; e�ikTMmz L1

�
; bEj

�
dj
� ¼ diag

�
eikjzdj ; e�ikjzdj ; eikjzdj ; e�ikjzdj

�
: (12)

b b b b b
The aforementioned matrices A0, A1, A2, A3 and Am have the following form:

bA3 ¼

0BB@
s�3 0
1 0
0 g�

3
0 1

1CCA; bA0 ¼

0BB@
sþ0 0
1 0
0 gþ0
0 1

1CCA; bAj ¼

0BB@
sþj s�j 0 0
1 1 0 0
0 0 gþj g�

j
0 0 1 1

1CCA; j ¼ 1;2;m; (13)

with the following coefficients:
g±m ¼ ±εmkTMmz þ iε0b

k0
�
ε
2
m � ε

02
� ; s±m ¼ ±mmk

TE
mz þ im0b

k0
�
m2m � m02

� ;

g±i ¼ ±
kiz
k0εi

; s±i ¼ ±
kiz
k0

; ði ¼ 1;2Þ

g±j ¼ ±
q3z
k0εj

; s±j ¼ ±
qjz
k0

: ðj ¼ 0;3Þ

(14)
The requirement of turning to zero the determinant of the system Eq. (11) gives the dispersion relation for the waveguide
modes in the considered complex structure:���������

�sþ0 0 T11s
�
3þT12 T13g

�
3þT14

�1 0 T21s
�
3þT22 T23g

�
3þT24

0 �gþ0 T31s
�
3þT32 T33g

�
3þT33

0 �1 T41s
�
3þT42 T43g

�
3þT44

��������� ¼ 0: (15)
Further we use the analytical results presented above for the numerical calculations of the dispersion dependencies of the
normal EMWs in the considered complex waveguide structure.

3. Numerical results and discussion

3.1. Dielectric permittivities and the propagation regimes of the electromagnetic waves

For the numerical calculations we took into account the refractive indices dispersion for all constituent media of the
considered complex waveguide structure. In the optical and near infrared regimes the dispersive refractive indices n1(l) for
GGG, n2(l) for TiO2, and n3(l) for SiO2, and nm(l) for YIG have the following forms [29]:
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n2kðlÞ ¼ εkðlÞ ¼ f ðkÞ0 þ f ðkÞ1 l2

l2 �
�
l
ðkÞ
1

�2 þ f ðkÞ2 l2

l2 �
�
l
ðkÞ
2

�2 þ f ðkÞ3 l2

l2 �
�
l
ðkÞ
3

�2; k ¼ 1;2;3;m; (16)

where the EMW's wavelength l is in microns and the Sellmeier's coefficients f ðkÞa and lðkÞa (a¼ 0,1, 2, 3) are gathered in Table 1.
In Eq. (16) and Table 1 the values of l and lðkÞa are in microns.

The off-diagonal material tensor elements of YIG are ε
0 ¼ �2:47$10�4 and m0 ¼ 8:76$10�5 [23], and for the considered

frequency regime mm ¼ 1 [27].
In Fig. 2(a) the frequency dependencies of the dielectric permittivities for all the materials constituting the complex

waveguide structure are shown for the near infrared regime within the wavelength range from lmin ¼ 1.35 mm till
lmax ¼ 7.07 mm (which correspond to umin ¼ 266 rad$THz, and umax ¼ 1.4 rad$PHz). The solid (blue), dashed (green), dash-
dotted (red) and dotted (black) lines refer to TiO2, YIG, GGG and SiO2 permittivity components, respectively.

As one can see from Fig. 2(a), for the considered frequency range, the dielectric permittivity of YIG is larger than that of
both the SiO2 substrate and GGG layer, which is the first layer of the PC covering the YIG slab (see Fig. 1). It should be noted
that in the considered frequency range the difference between the z-components of reduced wavevectors kTEmz=k0 and kTMmz =k0
in YIG is about 10�9, and thus the effective refractive indices introduced in Eqs. (7) and (8) are nTEYIGznTMYIG ¼ nm.

The condition ε3 < ε1 < εm which is satisfied for the dielectric permittivities of SiO2, GGG and YIG in near infrared regime,
allows an existence of the wavevector interval where the EMWs can propagate simultaneously in YIG layer, as well as in all
layers of the dielectric PC, and decay in the substrate and vacuum. In Fig. 2(b) the propagation ranges for the EMWs in YIG,
GGG, TiO2 and the ranges of exponential decay of EMWs in vacuum and SiO2-substrate are schematically depicted. The
intersection of all these ranges gives the resulting area ε3 < (b/k0)2 < ε1 which is schematically shown in Fig. 2(b) with the dark
segment on the axis (b/k0)2.

Within the interval ε1 < (b/k0)2 < εm the propagation regime changes: the EMWs can propagate in YIG and TiO2 layers as
before, but decay in the substrate and GGG layers.

Finally, for b/k0 within the interval εm < (b/k0)2 < ε2, the EMWs can propagate in TiO2 layers only.

3.2. Spectra for the complex waveguide structure with the photonic crystal

First we calculate the spectra (reduced propagation constant b/k0 vs u) of the normal EMWs of the complex waveguide
structures SiO2/YIG/(GGG/TiO2)N/vacuum with increasing the period number N.

In Fig. 3 we show the dispersion curves for the normal EMWs in the case of a single GGG/TiO2 bilayer (N ¼ 1) covering the
YIG layer for TE- and TM-modes, respectively [Fig. 3(a) and (e)];N¼ 4 [Fig. 3(b) and (f)],N¼ 7 [Fig. 3(c) and (g)], and forN¼ 10
[Fig. 3(d) and (h)]. The red and blue lines correspond to TE- and TM-polarized EMWs, respectively. The calculations are
performed for the YIG film thickness L1 ¼ 2.0 mm, and the GGG and TiO2 sublayer thicknesses d1 ¼ d2 ¼ 0.5 mm. The black and
green lines in Fig. 3(a)e(h) show the refractive index dispersion for GGG n1ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ε1ðuÞ

p
and YIG nYIGðuÞ, respectively, which

indicate the ranges of changing the EMWs' propagation regime, discussed above. The dispersion lines (or their parts) located
below the black line characterize the EMWs propagating in all layers of the structure except the SiO2 substrate. Within the
intermediate region n1(u) < b/k0 < nYIG(u) [the range between the black and green lines in Fig. 3] the propagation of EMWs is
possible in YIG and TiO2 layers, while for the range above the green line, the EMWs propagate in TiO2 layers only.

As one can see from Fig. 3(a)e(e), the increase of N leads to increase of the number of dispersion lines in the considered
frequency range as well as to forming some gaps in the spectra. These gaps are similar to the photonic band gaps in the
transmittivity spectra of the PCs and they becomemore pronounced for larger values ofN. However, the considered frequency
range corresponds not to the photonic band gap of the PC, but to the transmission band. The behavior of the TE- and TM-
polarized modes differs for all values of N: for TE-modes the gap is formed already at b/k0 ¼ 1.44 for N ¼ 7, while for TM-
modes the gap is forming when b/k0 increases the value of about 1.70 for N � 7. In Fig. 3(b)e(d), (f)e(h) one can see the
family of dispersion curves which has a tendency for asymptotic convergence at the high frequencies. Some dispersion lines
approach each other (without intersection) and formmini-gaps. As an example, one of suchmini-gaps is shown in the inset to
Fig. 3(d), where it appears in the specter of TE-modes at the frequency range (940 < u < 960) rad$THz. The mini-gap width
Table 1
Sellmeier's coefficients for the materials constituting the complex waveguide structure.

GGG [29,30] f ð1Þ0 ¼ 1 f ð1Þ1 ¼ 1:7727 f ð1Þ2 ¼ 0:9767 f ð1Þ3 ¼ 4:9668

l
ð1Þ
1 ¼ 0:1567 l

ð1Þ
2 ¼ 0:01375 l

ð1Þ
3 ¼ 0:22715

TiO2 [29,31] f ð2Þ0 ¼ 5:913 f ð2Þ1 ¼ 0:2441 f ð2Þ2 ¼ 0 f ð2Þ3 ¼ 0

l
ð2Þ
1 ¼ 0:0803 l

ð2Þ
2 ¼ 0 l

ð2Þ
3 ¼ 0

SiO2 [29,32] f ð3Þ0 ¼ 1 f ð3Þ1 ¼ 0:6961663 f ð3Þ2 ¼ 0:4079426 f ð3Þ3 ¼ 0:8974794

l
ð3Þ
1 ¼ 0:0684043 l

ð3Þ
2 ¼ 0:1162414 l

ð3Þ
3 ¼ 9:896162

YIG [33] f ðmÞ
0 ¼ 1 f ðmÞ

1 ¼ 3:739 f ðmÞ
2 ¼ 0:79 f ðmÞ

3 ¼ 0

l
ðmÞ
1 ¼ 0:28 l

ðmÞ
2 ¼ 10:00 l

ðmÞ
2 ¼ 0



Fig. 2. (a) Dielectric permittivities as functions of angular frequency u for TiO2 (solid line), YIG (dashed line), SiO2 (dotted line) and GGG (dash-dotted line). (b)
Schematic ranges of the EMWs propagation: within the interval ε3 < (b/k0)2 < ε1 (marked with the dark segment) the EMWs can propagate in YIG layer and all
PC's layers; for ε1 < (b/k0)2 < εm the waveguide propagation of EMWs is allowed in YIG and TiO2 layers; for εm < (b/k0)2 < ε2 the waveguide propagation is only
possible in TiO2 layers.

Fig. 3. Dispersion curves for the complex waveguide structure SiO2/YIG/(GGG/TiO2)N/vacuum: N ¼ 1 (a) and (e); N ¼ 4 (b) and (f); N ¼ 7 (c) and (g); N ¼ 10 (d) and
(h). The red and blue lines correspond to TE- and TM-polarized modes, respectively. The inset in (d) shows the mini-gap in the vicinity of u z 950 rad$THz. The
YIG film thickness is L1 ¼ 2.0 mm, the GGG and TiO2 sublayer thicknesses are d1 ¼ d2 ¼ 0.5 mm. The black and green lines show the refractive index dispersion
n1(u) for GGG and nYIG(u) for YIG. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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does not exceed 0.01 b/k0 (dimensionless wave number). The similar gap for the TM-mode (N ¼ 7) is slightly shifted to the
higher frequencies (960 < u < 990) rad$THz. The number of mini-gaps depends on the polarization of EMWs. For example, for
N¼ 4 there is only onemini-gap for TE-modes at about uz 950 rad$THz [see Fig. 3(b)], while for TM-modes one can see three
mini-gaps [Fig. 3(f)] in the vicinity of u z 980 rad$THz, u z 1.07 rad$PHz and u z 1.3 rad$PHz. The number of mini-gaps
increases with the increase of GGG/TiO2 bilayer's number N in the system (see Fig. 3).

It should be mentioned that the spectra of normal EMWs for the structures SiO2/YIG/(GGG/TiO2)N/vacuum demonstrate
presence of the degeneracy points, where the dispersion curves of TE- and TM-modes intersect. In Fig. 4(a) we show the
spectra for the waveguide structure with N ¼ 4 (GGG/TiO2) bilayers with several cross-points (intersection of dispersion
curves for TE- and TM-modes).

We also study the influence of the YIG layer thickness L1 on the dispersion curves of the complex waveguide structure. In
Fig. 5(a)e(h) we show the evolution of the spectra for TE- (red lines) and TM-modes (blue lines) for L1 ¼0, 1, 2, and 4 mm. The
calculations are performed for the case of the PC with N ¼ 7 periods. Similarly to Fig. 3, the black and green lines in
Fig. 5(a)e(h) indicate the ranges of changing the EMWs' propagation regime. As it was discussed above, within the range
between the black and green lines in Fig. 5(b)e(d) and Fig. 5(f)e(h), the propagation of EMWs is possible in YIG and TiO2

layers, while for the range above the green line the EMWs propagate in TiO2 layers only. As one can see from Fig. 5(a) and (e),
in absence of the YIG layer (L1 ¼ 0) (i.e., for the structure SiO2/(GGG/TiO2)7/vacuum), the pronounced gaps in the spectra are
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formed for both TE- and TM-polarized EMWs. The dispersion curves (or the part of dispersion curves) below the black line
n1(u) characterize the EMWs, propagating in all the layers forming the photonic structure (GGG/TiO2)N, and those above the
black line correspond to propagation of the EMWs in TiO2 layers only.

Introducing the YIG layer, we obtain the narrowing of the gaps in the EMWs spectra for both polarizations; as well some
dispersion curves form the mini-gaps. For example, for TM-polarized mode the mini-gap appears in the vicinity of
u z 1.08 rad$PHz in the case of YIG layer thickness L1 ¼ 1 mm [see Fig. 5(f)], while for TE-mode [Fig. 5(b)] in the vicinity of
u z 770 rad$THz the dispersion lines come close one to another but do not intersect.

In Fig. 5(a)e(h) one can see that the increase of YIG layer thickness leads to increase of the dispersion curves number and
the number of mini-gaps within the considered frequency range both for TE- and TM-polarized EMWs.

As the dispersion spectra are sensitive to the YIG layer thickness, we can thus fix the EMW wavelength and investigate in
details the dependence of the propagation constant b/k0 on L1. For the numerical calculations at the working wavelengths
l0 ¼ 1.55 mm we used the following geometrical parameters of the waveguide structure: L1 varies from zero to 10 mm, and
d1 ¼ d2 ¼ 0.5 mm. In Fig. 6 we present the dispersion curves (the reduced waveguide propagation number b/k0 as function of
the reduced YIG layer thickness L1/l0 for the complex MO waveguide structure SiO2/YIG/(GGG/TiO2)N/vacuum with different
numbers N of (GGG/TiO2) bilayers. The red and blue lines correspond to TE- and TM-modes, respectively. The black horizontal
line defined as b/k0 ¼ n1(l0) ¼ 1.935 and the green one b/k0 ¼ nYIG(l0) ¼ 2.201 separate the regions, where the EMWs have
different propagation regime. The dispersion curves located below the black line correspond to the EMWs propagating in all
the layers of the system, except the substrate and vacuum. The dispersion lines between the black and green lines charac-
terize the EMWs propagating in YIG and TiO2 layers only.

The dispersion curves shown in Fig. 6(a) are calculated for the structurewith the single (GGG/TiO2) bilayer (N¼ 1) covering
the YIG waveguide layer. In Fig. 6(b) and (c) and 6(d) the resulting dispersion curves for the complex waveguides with the
dielectric PCs with N ¼ 4, N ¼ 7 and N ¼ 10 are presented, respectively. Comparing Fig. 6(a)e(d) one can see that the increase
of the number of the PC's periods leads to essential deformation of the dispersion dependencies, namely, to corrugated form
of these curves. As well one can see the flattening areas about b/k0z 1.93, and b/k0z 2.2where the dispersion curves become
almost parallel to the abscissa axis. The upper curves for TE- and TM-modes almost merge in the vicinity of b/k0 z 2.2. The
flattening regions located near b/k0z 1.93 becomemore pronounced with increase of the period number N. The increase of N
also leads to appearance of the degeneracy points, where the dispersion curves of TE-and TM-modes intersect [see Fig. 6(c)
and (d)] and the modes of both polarizations may coexist. For all values of N the spectra of TM-modes have the mini-gap at
about b/k0 z 2.0, which narrows for large values of N.

Finally, in Fig. 7 we present the evolution of the waveguide spectra (b/k0 vs L1/l0) with variation of the thicknesses of the
PC's layers d1 and d2. The PC period is fixed to be the constant value d ¼ d1 þ d2 ¼ 1 mm, while d1 and d2 change: in Fig. 7(a)
d1 ¼ 0, d2 ¼ 1.0 mm, in Fig. 7(b) d1 ¼ 0.1 mm, d2 ¼ 0.9 mm, in Fig. 7(c) d1 ¼ 0.3 mm, d2 ¼ 0.7 mm, in Fig. 7(d) d1 ¼ 0.5 mm,
d2¼ 0.5 mm, in Fig. 7(e) d1¼0.7 mm, d2 ¼ 0.3 mm, in Fig. 7(f) d1¼0.9 mm, d2 ¼ 0.1 mm, and in Fig. 7(g) d1 ¼1.0 mm, d2 ¼ 0. For all
these calculations we choose the number of the dielectric PC periods N ¼ 10, the working wavelength is l0 ¼ 1.55 mm. As
mentioned above, the black horizontal line (b/k0 ¼ n1(l0) ¼ 1.935) and the green one (b/k0 ¼ nYIG(l0) ¼ 2.201) separate the
regions with different propagation regimes. From comparison of Fig. 7(a)e(g) it follows that the considered spectra are very
sensitive to the relation between the dielectric layer thicknesses. Thus, the increase the GGG layer thickness d1 (with cor-
responding decrease of the TiO2 layer thickness d2) leads to appearance of the new mini-gaps in the spectra of TE- and TM
modes. For example, for d1 ¼ 0.7 mm, d2 ¼ 0.3 mm [see Fig. 7(e)], we obtain the system of narrow mini-gaps in the regions
2.15 < b/k0 < 2.19 for TE-modes and 2.04 < b/k0 < 2.12 for TM-modes, as shown in the insets (e1) and (e2) to Fig. 7(e). The
further increase of the GGG rate to d1 ¼ 0.9 mm (d2 ¼ 0.1 mm) in the PC's structure gives the lowering of the positions of these
mini-gaps along the b/k0 axis to 1.92 < b/k0 < 2.01 for TE-modes and 1.86 < b/k0 < 1.98 for TM-modes [Fig. 7(e)]. Fig. 7(a) and
Fig. 4. The spectra of normal EMWs of TE- and TM-polarizations (red and blue lines, respectively), for the structure SiO2/YIG/(GGG/TiO2)N/vacuum in the vicinity of
the degeneracy points (intersection of dispersion curves for TE- and TM-modes). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



Fig. 5. Dispersion curves for the structure SiO2/YIG/(GGG/TiO2)N/vacuum with N ¼ 7 bilayers for different thicknesses of the YIG layer: L1 ¼ 0 (a) and (e);
L1 ¼1.0 mm (b) and (f); L1 ¼ 2.0 mm (c) and (g); L1 ¼ 4.0 mm (d) and (h). The red and blue lines correspond to TE- and TM-polarized modes, respectively. The GGG
and TiO2 layer thicknesses are d1 ¼ d2 ¼ 0.5 mm. The black and green lines show the refractive index dispersion for GGG n1(u) and YIG nYIG(u), respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Dispersion curves for the structure SiO2/YIG/(GGG/TiO2)N/vacuum: (a) N ¼ 1, (b) N ¼ 4, and (c) N ¼ 7 and (d) N ¼ 10. The YIG film thickness changes from
0 to 10 mm, the TiO2 and SiO2 sublayer thicknesses are d1 ¼ d2 ¼ 0.5 mm. The red and blue lines correspond to TE- and TM-modes, respectively. The calculations are
performed for l0 ¼ 1.55 mm. The black horizontal line (b/k0 ¼ n1(l0) ¼ 1.935) and the green one (b/k0 ¼ nYIG(l0) ¼ 2.201) separate the regions, where the EMWs
have different propagation regimes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(g) refer to the limiting cases when one of the layers constituting the PC (GGG or TiO2) collapses (d1 ¼ 0 or d2 ¼ 0, respec-
tively). Thus, Fig. 7(a) presents the spectra for the structure SiO2/YIG/TiO2/vacuum, and Fig. 7(g) refers to the case of SiO2/YIG/
SiO2/vacuumwith L2 ¼ 10 mm. In Fig. 7(g) the dispersion curves which converge to the black line b/k0 ¼ n1(l0) ¼ 1.935 refer to
the case when propagation is allowed in YIG, GGG and TiO2 layers. The curves above the line b/k0 ¼ 1.935 converge to the
green line b/k0 ¼ nYIG(l0) ¼ 2.201 and correspond to the regime with the propagation allowed in the YIG layer only.

3.3. The limiting cases for the complex waveguide structure

In the limiting cases, when the thickness of one of the dielectric sublayer constituting the PC becomes zero, we obtain the
four-layer waveguide systems: SiO2/YIG/TiO2/vacuum with d1 ¼ 0, and SiO2/YIG/GGG/vacuum with d2 ¼ 0. In Fig. 8(a) and (b)
we show the dispersion curves b/k0 vs u for SiO2/YIG/TiO2/vacuum (a) and SiO2/YIG/GGG/vacuum (b) structures. The red and
blue lines refer to TE- and TM- polarized modes, respectively.

There are two waveguide regimes in the structure under consideration: the regime A with two guiding layers, and the
regime B with the only one guiding layer, while the other one plays a role of either a substrate or a cladding [34]. The dash-
dotted line, corresponding to nYIG(u), and dashed line, referring to n1(u), become in fact the cutoff limits for the double-layer
guiding modes (regime A), as shown in Fig. 8(a) and (b), respectively. The region between the dashed and dash-dotted lines
corresponds to the regime B. Fig. 8(a) shows the TiO2-layer guiding modes (the YIG layer plays a role of a substrate), while the



Fig. 7. Evolution of the complex waveguide spectra (b/k0 vs L1/l0) with variation of the thicknesses of the PC's layers d1 and d2. The PC period d ¼ d1 þ d2 ¼ 1 mm
is constant, and N ¼ 10 is fixed: (a) d1 ¼ 0, d2 ¼ 1.0 mm, (b) d1 ¼ 0.1 mm d2 ¼ 0.9 mm, (c) d1 ¼ 0.3 mm, d2 ¼ 0.7 mm, (d) d1 ¼ 0.5 mm, d2 ¼ 0.5 mm, (e) d1 ¼ 0.7 mm,
d2 ¼ 0.3 mm, (e) d1 ¼ 0.9 mm, d2 ¼ 0.1 mm, and d1 ¼ 1.0 mm d2 ¼ 0. The insets (e1) and (e2) show the mini-gaps in TE- and TM-modes spectra in detail. The
calculations are performed for l0 ¼ 1.55 mm.
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YIG-layer guiding modes (the GGG layer plays a role of a cladding) are represented in Fig. 8(b). The waveguide characteristics
of all TE- and TM-polarized modes are similar to ones in Fig. 3, calculated with the matrix method, however, using the
effective medium approximation, one can identify a mode order by a number of nodes of the transverse field distributions, or
profile function for TE- and for TM-modes. The zeroth fundamental mode has the highest mode index b/k0 at any frequency in
comparison with the next order mode, etc. With the increasing mode order its effective refractive index decreases at a fixed
frequency. In general the propagation constants for the TE-modes are larger than for the TM-modes of the same order
throughout the whole frequency range. The existence area of the modes is restricted by n3 (SiO2) from below and by n2 (TiO2)
[Fig. 8(a)] or by n1 (GGG) [Fig. 8(b)] from above.

The profile functions of TE1- and TM1-modes guided by the YIG-layer (regime B) are represented in Fig. 8(c) for
u ¼ 400 rad$THz, L1 ¼ L2 ¼ 5 mm by the lines 1 and 2, which have only one node within the guiding layer. The TE2- and TM2-
modes at the same frequency are below the cutoff limits, therefore these modes are the four-layer waveguide modes of the
regime A [see lines 3 and 4 in Fig. 8(c)].
3.4. Spectra for the complex waveguide structure in the long wavelength limit

In the case of thin GGG and TiO2 layers, when (d1, d2) << l0 (i.e., when we deal with the long wavelength limit for the PC)
the effective medium approximation can be applied to present the dielectric PC as a homogeneous anisotropic slab of
thickness L2 with the effective dielectric permittivity tensor bεeff . In this approach the considered complex MO waveguide
structure can be treated as an asymmetric four-component waveguide SiO2/YIG/effective medium/vacuum which can be
described by the method similar to one proposed in Ref. [35]. The components of bεeff are of the form:



Fig. 8. Dispersion curves for SiO2/YIG/TiO2/vacuum structure (a), SiO2/YIG/GGG/vacuum structure (b) and field profile functions along the z-axis in the case of SiO2/
YIG/GGG/vacuum structure (c) for the TE- and TM-modes (solid red and dashed blue curves in Fig. 8(a) and (b), respectively) for u ¼ 400 rad$THz, L1 ¼ 5 mm,
L2 ¼ 5 mm; in Fig. 8(c) lines 1, 2 correspond to the TE1- and TM1-modes, and lines 3, 4 correspond to the TE2 and TM2-modes, respectively. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Thus, the PC as an effective medium can be characterized by two effective refractive indices nTEeff and nTMeff .
In Fig. 9(a) and (b) we present the dispersion curves and the field profile functions in the long wavelength limit for the PC.

The calculations are carried out for the PC of thickness L2¼1.5 mm, d1/d2¼ 0.8, and l0¼1.55 mm. As in Fig. 8, the solid (red) and
dashed (blue) curves refer to the modes of TE- and TM-polarizations, respectively. The shaded area in Fig. 9(a) and (b) shows
the existence region of the modes in the regime B. The comparison of Fig. 9(a) and (b) demonstrates the similar dispersion
spectra behavior. Only in the case of TM-polarized EMWs the fundamental mode transforms from the regime A to the regime
Bwith the increase of L1. So in the range nTMeff <b=k0 <nYIG only one TM0-mode of the YIG-layer can propagate, and the PC layer
affects the effective refraction index only near the cutoff thickness L2. For the TE-polarization all modes become one-layer
Fig. 9. Dispersion spectra b/k0 vs L2/l0 (a) and b/k0 vs L1/l0 (b) of the four-layer structure SiO2/YIG/effective medium/vacuum for TE- and TM-modes (solid red and
dashed blue curves, respectively) and the asymptotes nYIG, neff (dash-dotted and dashed lines, respectively) for l0 ¼ 1.55 mm, d1/d2 ¼ 0.8, L1 ¼ 1.5 mm (a) and
L2 ¼ 1.5 mm (b). (c) The field profile functions along the z-axis for the TE and TM modes (red and blue lines, respectively) for L1/l0 ¼ 1.5 (dotted lines 1 and 2:
regime B for TE0 and TM0-modes; solid lines 3 and 4: regime A for TE2 and TM2-modes). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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modes: in the area nYIG <b=k0 <nTEeff there is a guided mode of the PC-layer, while YIG acts as a cladding of the waveguide
structure.

At the inset in Fig. 9(b) the numbers 1 and 2 denote the TE0- and TM0-modes in the regime B, respectively, which are
represented by dotted lines in Fig. 9(c) (curves 1 and 2), while the numbers 3 and 4 refer to the TE2- and TM2-modes in the
regime A. Note also, that in contrast to Fig. 9(a), only TE0-mode is present in the regimes A and B simultaneously.

An important peculiarity of the considered structure is that for a fixed layer thickness the condition nTMeff <nYIG <nTEeff is
satisfied, which, in turn, leads to an “inversed” localization of the guided waves: TE-polarized wave propagates in the PC-layer
and TM-waves are guided in the YIG-layer.

It should be noted, that the change of ratio d1/d2 strongly affects the effective refractive index of the PC, and thus the
propagation regime of the EMWs.

4. Conclusions

We have investigated the dispersion dependencies of the normal electromagnetic waves in the complex magneto-optic
waveguide structure SiO2/YIG/(GGG/TiO2)N/vacuum for transverse magneto-optic configuration. Our calculations demon-
strate the pronounced influence of the dielectric PC covering the magneto-optic waveguide on the dispersion characteristics
of TE- and TM-modes. It is shown that the presence of the PC leads to an essential distortion of the dispersion curves which
increases with increasing of the number of the periods of the photonic structure. We also studied the case when period d of
the photonic crystal is comparable with the working wavelength l0 of the waveguide and the long-wavelength limit (d≪ l0).
It is shown that the relation of the geometrical parameters of the considered structure (especially, the period of the PC) and
the working wavelength is crucial factor which affects the behavior of the dispersion curves. We hope that our results will be
useful for designing the complex devices (based on magneto-optic waveguides and photonic crystals) for modern integrated
photonics. We hope that the investigated above combined structures based on MO waveguides and PCs can open new op-
portunities for possible applications in photonic devices.
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