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a b s t r a c t

The influence of hydrostatic pressure P up to 1.05 GPa on resistivity ρ, excess conductivity σ′( )T and
pseudogap Δ ( )⁎ T is investigated in slightly doped single crystals of YBa2Cu3O7�δ ( ( = ) ≈T P 0 49.2 Kc and
δ ≈ 0.5). The critical temperature Tc is found to increase with increasing pressure at a rate

=+ −dT dP/ 5.1 KGPac
1, while ρ ( )300 K decreases at a rate ρ = ( − ± ) −d dPln / 19 0.2 %GPa 1. Near Tc, in-

dependently on pressure, σ′( )T is well described by the Aslamasov–Larkin and Hikami–Larkin fluctuation
theories, demonstrating a 3D–2D crossover with increase of temperature. The crossover temperature T0
determines the coherence length along the c-axis ξ ( ) ≃ ( ± ) ˚0 3.43 0.01 Ac at P¼0, which is found to
decrease with increasing P. At the same time, Δ⁎ and the BCS ratio Δ⁎ k T2 / B c both increase with increasing
hydrostatic pressure at a rate Δ ≈⁎ −d dPln / 0.36 GPa 1, implying an increase of the coupling strength with
increasing P. At low temperatures below Tpair, the shape of the Δ ( )⁎ T curve is found to be almost in-
dependent of pressure. At high temperatures, the shape of the Δ ( )⁎ T curve changes noticeably with
increasing P, suggesting a strong influence of pressure on the lattice dynamics. This unusual behavior is
observed for the first time.

& 2016 Published by Elsevier B.V.
1. Introduction

The pseudogap (PG), which is opening in the excitation spec-
trum at the characteristic temperature ⪢⁎T Tc, remains to be one of
the most interesting and intriguing properties of high-tempera-
ture superconductors (HTSCs) with the active CuO2 plane (cup-
rates) [1–3]. According to the definition proposed by Mott [4,5], PG
is a specific state of matter with a depleted density of the quasi-
particle states (DOS) at the Fermi level at temperatures > ⪢⁎T T Tc,
where Tc is the superconducting transition temperature. In
YBa2Cu3O7�δ a noticeable reduction of DOS at < ⁎T T , i.e. PG was
observed soon after the discovery of the cuprates by measuring
the Knight shift, K(T), i.e. the frequency shift in the nuclear mag-
netic resonance (NMR) [6]. NMR measurements allow one to de-
duce the spin susceptibility χ ω( )k,s of the charge carriers. The
Knight shift being proportional to the spin polarization in external
Goethe-Universität, Frankfurt

t.de (O.V. Dobrovolskiy).
magnetic field determines the static ( ω = 0) and homogeneous
( =k 0) parts of the susceptibility, that is χ χ∽ ≡ ( )K 0, 0s s . In the
Landau theory [7] χ ρ ρ( )∽ ( ) ≡0, 0 0s n f , where ρ ε( )n is the depen-
dence of the density of the Fermi states on the energy in the
normal state. In the classical superconductors ρ ε( )n (DOS) and,
hence, K(T) remain nearly constant in the whole temperature
range of the existence of the normal phase, whereas in HTSCs it
rapidly decreases at ≤ ⁎T T [6]. Recently, the reduction of DOC and
PG at < =⁎T T 170 K has been directly measured by angle resolved
photoemission spectroscopy (ARPES) for the cuprate Bi2201 [8]. It
was observed that as in the case of classical metals, DOS does not
depend on temperature above Tn, but it starts to rapidly decrease
at < ⁎T T . In consequence of this, a depleted DOS, i.e. PG is ob-
served in a broad temperature range from Tn to Tc¼32 K. However,
the physics of the processes leading to the decrease of DOS at

> ⪢⁎T T Tc remains uncertain so far [1–3,9].
There is a noticeable number of theoretical models addressing

the non-superconducting nature of the appearance of PG, see e.g.
Refs. [1,9–12] and references therein. However, we adhere another
viewpoint that PG appears in consequence of the formation of
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Fig. 1. Temperature dependence of the resistivity ρ of the YBa2Cu3O7�δ

( δ− ≃7 6.5) single crystal at P¼0 (curve 1, dots) and 1.05 GPa (curve 2, semi-
circles). Dashed lines depict the extrapolations of ρ ( )TN to the low-T region. Tfit is
the temperature down to which the polynomial fitting was performed. Inset dis-
plays the determination of Tn at P¼0 using the ρ ρ α( ( ) − ))T T/0 criterion (see text for
details).
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paired fermions (local pairs) in HTSCs at ≤ ⁎T T , see e.g. Refs.
[2,13–18] and references therein. According to the theories of
systems with small charge carrier density nf [19–21], right those as
HTSCs are, the local pairs (LP) can appear at ≤ ⁎T T in the form of
so-called strongly bound bosons (SBB). By definition, SBB are low-
dimensional, but exceptionally strongly bound pairs obeying the
theory of Bose–Einstein condensation (BEC). The pair size is de-
termined by the coherence length in the ab-plane, ξab, the typical
value of which in YBCO with a close-to-optimal doping level
ξ ∼ ( – ) ˚5 10 Aab [22,23]. Accordingly, the bound energy in this pair,
ε ξ∼ ( )1/b ab

2, is very large [20,21]. In consequence of this, SBB are
not destroyed by thermal fluctuations and do not interact one with
another since the pair size is much smaller than the distance be-
tween them. However, LP can only condensate at ⪡ ⁎T Tc [19–21]. For
this reason, upon approaching Tc SBB have to transform into
fluctuating Cooper pairs (FCP) which obey the Bardeen–Cooper–
Schrieffer (BCS) theory [25]. In this way, the theory predicts a BEC–
BCS transition with decreasing T, as observed experimentally
[24,26]. In YBCO thin films, the temperature of this transition
amounts to ∼T 130 Kpair [27]. At the same time, there exist one
more characteristic temperature < <T T Tc pair01 . According to the
theory, the wave function phase stiffness has to be maintained up
to T01 [13,28–30]. This means that the superfluid density, ns,
maintains a nonzero value up to T01 [13,28,29]. However, the de-
tails of the BEC–BCS transition are not fully clear so far as well
[2,20,21,26,31].

Pressure is a powerful tool for studying various properties of
the cuprates [32–38] and it is widely used in experiments since the
discovery of HTSCs [39] till present days [40]. Pressure noticeably
affects Tc and the resistance of HTSCs in the normal state. In
contrast to the conventional superconductors, in the cuprates in
the vast majority of cases the dependence dT dP/c is positive,
whereas the derivative ρd dTln /ab is negative and relatively large
[32–34]. Here, ρab is the resistivity in the ab-plane, that is parallel
to the CuO2 conducting layers. The pressure impact mechanisms
on ρ are not ultimately understood for the reason that the nature
of the transport properties of HTSCs, strictly speaking, is not
completely clear. As is well known, the main contribution to the
conductivity in the cuprates is provided by the CuO2 planes be-
tween which there is a relatively weak interlayer interaction.
Pressure is likely to lead to a redistribution of the charge carriers
and to an increase of their concentration nf in the conducting CuO2

planes that should lead to a reduction of ρ. Properly, the increase
of nf under pressure should also lead to an increase of Tc, i.e. to a
positive value of dT dP/c observed in experiment. This process
should take place easier in slightly doped samples [41], where nf is
small and there is a large number of oxygen vacancies [42,43].

The theoretical problem of the effect of hydrostatic pressure on
ρab in HTSCs was addressed in Ref. [32]. There are also several
works where the influence of pressure on the fluctuation con-
ductivity (FLC) in various cuprates was studied [33–35]. Recently, it
has been shown that pressure also noticeably increases the value
of the superconducting gap in various cuprates [44,45]. At the
same time, there has been few work addressing the pressure effect
on PG [41,46].

Here, we investigate the effect of hydrostatic pressure on the
temperature dependences of the resistivity ρ ( )Tab in slightly
doped YBa2Cu3O7�δ single crystals (YBCO) with Tc¼49.2 K at
P¼0. We investigate the fluctuation contributions to the con-
ductivity, chiefly focusing on the temperature dependence of the
excess conductivity σ′( )T . From the analysis of the excess con-
ductivity the value and the temperature dependence of FLC and
the pseudogap Δ ( )⁎ T at pressures up to P¼1.05 GPa (1 GPa
¼10 kbar) are obtained. The analysis is conducted in the frame-
work of our model of the local pairs [2,26], as detailed in the text.
Comparison of our results with the results obtained for
Bi2Sr2CaCu2O8�δ (BiSCCO-2212) [32], HgBa2Ca2Cu3O8 (Hg-2223)
[35] and slightly doped HoBa2Cu3O7�δ [41] should help to un-
derstand better the mechanisms of the pressure effect on Tc,
ρ ( )Tab , FLC and Δ ( )⁎ T .
2. Experiment

The YBa2Cu3O7�δ (YBCO) single crystals were grown by the
solution-melt technique according to Refs. [36–38,47]. For elec-
trical resistance measurements were selected crystals of rectan-
gular shape with typical dimensions of 3�5�0.3 mm3. The
minimal dimension corresponds to the c-axis. To obtain samples
with a given oxygen content, the crystals were annealed in an
oxygen atmosphere as described in Refs. [36,47]. The electrical
resistance in the ab-plane was measured in the standard four-
probe geometry with a dc current up to 10 mA [48] in the regime
of fully automated data acquisition. The measurements were
conducted in the temperature sweep mode, with a rate of 0.1 K/
min near Tc and about 5 K/min at ⪢T Tc.

Hydrostatic pressure was created in an autonomous chamber of
the cylinder-piston type according to the technique described in
Refs. [48,49]. For the determination of the effect of oxygen redis-
tribution the measurements were conducted in two to seven days
after the application of pressure, after the relaxation processes had
been completed [41]. Fig. 1 displays the temperature dependences
of the resistivity ρ ρ( ) ≡ ( )T Tab of the YBa2Cu3O7�δ single crystal
with ( = ) =T P 0 49.2 Kc and the oxygen index δ− ∼7 6.5 [50]
measured at P¼0 (curve 1) and P¼1.05 GPa (curve 2). The curves
have an expected S-shaped form typical for slightly doped YBCO
films [2,51] and single crystals [50,52].

Besides, as it follows from the theory [17,19–21,29], in this case
the values of the characteristic temperature Tn are noticeably
higher than ∼⁎T 140 K observed in YBCO compounds [51,50].
Nevertheless, in the temperature range from = ( ± )⁎T 252 0.5 K
(curve 1) and = ( ± )⁎T 254 0.5 K (curve 2) to ≃300 K, the depen-
dence ρ ( )T is linear with the slopes ρ = μΩ −d dT/ 2.48 cm/K 1 and

ρ = μΩ −d dT/ 2.08 cm/K 1 for P¼0 and P¼1.05 GPa, respectively
(Fig. 1). The slopes were determined by computer linear fitting
which confirms a rather good linearity of the dependences in the
stated temperature range with the standard error of about

±0.009 0.002 at all applied pressures. The PG temperature Tn is



A.L. Solovjov et al. / Physica B 493 (2016) 58–6760
taken at the point where the experimental resistivity curve starts
to turn down from the linear high-temperature behavior depicted
by the dashed lines in the figure.

A more precise approach for the determination of Tn relies
upon the criterion ρ ρ α[ ( ) − ]T T/0 [53]. Now Tn is the temperature
at which ρ ρ α[ ( ) − ]T T/0 turns down from 1 as shown in the inset in
Fig. 1. Both approaches yield the same Tn values. In fact, we
have six curves (six samples: Y0–Y6) measured at

=P 0, 0.29, 0.56, 0.69, 0.78 and 1.05 GPa. The sample parameters
obtained at different P are listed in Tables 1 and 2. The de-
pendences ρ ( )T measured for all intermediate pressure values also
have an S-shaped form and are located between the two curves
shown in Fig. 1. The whole set of curves resembles that shown in
Fig. 1 in Ref. [41].

As can be seen from Table 2, the pressure actually does not
affect the Tn values. At the same time, the linear slope a is found to
linearly decrease with P at a rate = ( ± )da dP/ 0.38 0.02
μΩ − −cm K GPa1 1 . Simultaneously, the pressure increase leads to a
noticeable reduction of the resistance of the sample. The relative
reduction of ρ ( )T as a function of pressure is practically in-
dependent of temperature above 260 K and amounts to

ρ ( ) = − ± −d K dPln 300 / 19 0.2% GPa 1 (Fig. 2, curve 1). This value
is smaller than ρ = − ± −d dPln / 25.5 0.2% GPa 1 for BiSCCO
single crystals [32], but it is noticeably larger than

ρ = − ± −d dPln / 4 0.2% GPa 1 obtained by us for slightly doped
HoBCO single crystals [41].

At the same time ρ ( )d K dPln 100 / amounts to
− ± −14.8 0.2% GPa 1 (Fig. 2, curve 2). The typical value for YBCO
single crystals ρ = − ± −d dPln / 12 0.2% GPa 1 is in good agreement
with our results, given the different doping level of the samples
(see Ref. [32] and references therein). We note that

ρ ( )d K dPln 100 / demonstrates a nearly linear dependence on P
with a standard error of about 0.00323 (Fig. 2, curve 2) which is
typical for the monocrystalline cuprates [32]. In contrast,

ρ ( )d K dPln 300 / of the studied YBCO single crystal displays a no-
ticeable deviation from linearity centered at ∼0.7 GPa (Fig. 2, curve
1). This peculiarity is also seen in the PG results, as will be dis-
cussed in a follow-up paragraph.

In spite of a number of studies of the relaxation processes in the
1–2–3 system under high pressure, many aspects, such as the
charge transfer and the nature of redistribution of the vacancy
subsystem, still remain uncertain [32,34,36–38,41,47]. Thus, the
electrical resistivity decreases not only as a consequence of the
high pressure, but also in the isobar process of retaining the
sample at room temperature, following the application of pressure
[37,38,41]. Importantly, when the pressure is removed, ρ ( )T finally
coincides with the original curve obtained before the application
of pressure [41]. This experimental fact confirms reversibility of
the process.

Fig. 3 displays the resistive curves in the vicinity of Tc at P¼0
(a) and P¼1.05 GPa (b), respectively, which contain all characteristic
temperatures of the superconducting (SC) transition. As usually, the
transition temperature Tc is determined by extrapolation of the linear
part of the resistive transition (dashed lines in Fig. 3) to ρ ( ) =T 0c

[54]. It is seen that the resistive transitions are rather broad:
Table 1
Parameters of the YBa2Cu3O6.5 single crystal.

P (GPa) ρ (100 K), μΩ( )cm Tc (K) Tc
mf (K) T

0 180.4 49.2 50.2 8
0.29 169.1 51.2 52.1 9
0.56 159.2 51.7 52.6 9
0.69 155.6 52.1 54.3 9
0.78 152.4 52.9 54.8 9
1.05 144.4 54.6 56.6 9
ρ ρΔ = ( ) − ( ) = ( − ) = ( = )T T T P0.9 0.1 52.77 49.45 K 3.32 K 0c c N c N and
Δ = − =T 58.76 54.74 4 Kc (P¼1.05 GPa). Here ρ( ′ )T 0.9c N and ρ( ′ )T 0.1c N
correspond to the temperatures at which resistivity decreases by 10%
and 90%, respectively, with respect to the ρ′N value just above the
resistive transition designated by the upper straight line (Fig. 3). In this
way, pressure broadens the resistive transition by about 20%, that is
not so pronounced as in HoBCO single crystals where the effect is of a
factor of 2 [41]. In addition to this, one sees that Tc expectedly rises
from 49.2 K up to 54.6 K with increasing pressure (see also Fig. 4).

From Figs. 3 and 4 we deduce that Tc increases with increasing
hydrostatic pressure at a rate ≃ + −dT dP/ 5.1 KGPac

1 which is in
good agreement with our results for slightly doped (SD) HoBCO
single crystals where ≃ + −dT dP/ 4 KGPac

1 [41]. The same value
≃ + −dT dP/ 4 KGPac

1 was also observed by pressure experiments in
SD polycrystalline YBa2Cu3O7�δ δ( − ∼ )7 6.6 by muon spin rota-
tion (μSR) [55]. This result confirms the expressed assumption that
in cuprates, Tc is likely to rise at the expense of the increase of the
charge carrier density nf in the CuO2 planes under pressure.
Meanwhile, it is likely that the oxygen vacancies in slightly doped
cuprates provide the possibility for a more easy redistribution of nf
as compared with optimally doped samples where the number of
vacancies is small and nf is, in turn, rather large.
3. Discussion

3.1. Fluctuation conductivity

Independently on the value of the applied pressure, below the
PG temperature Tn the resistivity curves of the studied
YBa2Cu3O7�δ single crystal turn down from the linear behavior of
ρ(T) observed at higher temperatures (Fig. 1). This leads to ap-
pearance of the excess conductivity

σ σ σ ρ ρ′( ) = ( ) − ( ) = [ ( )] − [ ( )] ( )T T T T T1/ 1/ , 1N N

where ρ ρ( ) = +T aTN 0 is the linear normal-state resistivity extra-
polated to the low-T region [2,56] and ρ0 is the intercept with the
y-axis. This procedure of the determination of the normal-state
resistivity is widely used in literature (see, e.g. Refs.
[2,53,54,57,58]) and has been justified theoretically within the
framework of the nearly antiferromagnetic fermi liquid (NAFL)
model [56].

Here we focus on the analysis of FLC and PG derived from the
measured excess conductivity within our LP model. We mainly
perform the analysis for sample Y0 (P¼0) and compare the results
with those obtained for sample Y6 (with P¼1.05 GPa applied for
five days) as well as with the results obtained for BiSCCO, YBCO
[32] and HoBCO [41] single crystals. Naturally, the same analysis
has been performed for all other samples under study. The sample
parameters derived from the analysis at different values of pres-
sure are listed in Tables 1 and 2.

First of all, the mean-field critical temperature Tcmf has to be
found. Here >T Tc

mf
c is the critical temperature in the mean-field

approximation, which separates the FLC region from the region of
critical fluctuations or fluctuations of the SC order parameter Δ0
01 (K) TG (K) ΔTfl (K) d1 (Å) ξ ( )0c (Å)

7.4 50.7 36.7 3.98 3.43
0.7 52.8 37.9 3.96 3.41
1.6 53.0 38.6 3.8 3.28
4.5 55.1 39.4 3.44 2.97
5.4 55.4 40.0 3.73 3.21
8.6 57.3 41.3 3.37 2.91



Table 2
Parameters of the YBa2Cu3O6.5 single crystal.

P (GPa) Gi ΔTcr (K) Tn (K) Dn, Δ ( )⁎ Tc (K) Δ⁎
max (K) Tmax (K) Tpair (K)

0 0.01 1.5 252 5 122.1 184.17 231.6 170
0.29 0.013 1.6 252 5.4 136.5 192.28 229.2 165
0.56 0.008 1.3 252 5.8 145.8 199.76 226.2 159
0.69 0.015 3.0 252 6.4 164.3 190.71 217.0 153
0.78 0.011 2.5 253 6.5 167.7 190.3 152.8 138
1.05 0.012 2.7 254 6.6 178.4 198.41 205.7 135

Fig. 2. Pressure dependence of ρ ( )Pln of the YBa2Cu3O6.5 single crystal at 288 K
(curve 1, circles). Solid line is guide for the eye. Squares (curve 2) represent ρ ( )Pln
measured at T¼100 K along with the least-squares fit.

Fig. 3. Resistive transitions of the YBa2Cu3O6.5 single crystal at P¼0 (panel a, dots)
and P¼1.05 GPa (panel b, circles). Tc is determined by extrapolation of the linear
part of the resistive transition to ρ ( ) =T 0c (dashed lines in the figure). Solid lines
designate the linear ρ ( )T regions just above the onset temperature Ton, which
defines ρ′N . The shaded areas determine the width of the resistive transitions

ρ ρΔ = ( ′ ) − ( ′ )T T T0.9 0.1c c N c N .

Fig. 4. ′σ −2 as a function of T at P¼0 (panel a, dots) and P¼1.05 GPa (panel b,
circles). The straight lines follow the law ′σ ( )− T2 which actually corresponds to the
3D AL fluctuation region. All temperatures designated by the arrows in the figure
are discussed in the text.

A.L. Solovjov et al. / Physica B 493 (2016) 58–67 61
directly near Tc (where Δ < kT0 ), neglected in the Ginzburg–
Landau (GL) theory [7,59]. In all equations used in the analysis the
reduced temperature [60] is used, viz.,

ε = ( − ) ( )T T T/ . 2c
mf

c
mf

The correct determination of Tcmf is hence crucial for the FLC and
PG calculations.

Within the LP model it was convincingly shown that FLC
measured for all HTSCs always demonstrates a crossover from the
2D (ξ ( ) <T dc ) in the 3D (ξ ( ) >T dc ) regime as T approaches Tc (see
Refs. [2,61,62] and references therein). As a result, near Tc FLC is
always extrapolated by the standard equation of the Aslamasov–
Larkin (AL) theory [63] with the critical exponent λ = − 1/2 (Fig. 5,
dashed line 1) which determines FLC in any 3D system

σ
ξ

ε′ =
( ) ( )

−C
e

32 0
,

3AL D D
c

3 3

2
1/2

where ξ ( )Tc is a coherence length along the c-axis, d is a distance
between the conducting layers [60], and C3D is a numerical factor
to fit the data to the theory [2,57,61]. This means that the con-
ventional 3D FLC is realized in HTSCs as T approaches Tc [2,62]. The
result is most likely a consequence of Gaussian fluctuations of the
order parameter in 2D metals which were found to prevent any



Fig. 5. σ′ln vs εln at P¼0 (panel a, dots) and P¼1.05 GPa (panel b, circles) com-
pared with the fluctuation theories: 3D AL (dashed line 1); MT with =d d1 (solid
curve 2), and MT with d¼11.67 Å (short dashed curve 3). εln 01 corresponds to T01
which determines the range of the SC fluctuations, εln 0 corresponds to the
crossover temperature T0, and εln G designates the Ginzburg temperature TG.
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phase coherence organization in 2D compounds [19–21]. As a re-
sult, the critical temperature of an ideal 2D metal is found to be
zero (Mermin–Wagner–Hoenberg theorem) and a finite value is
obtained only when three-dimensional effects are taken into ac-
count [17,19–21]. From Eq. (3), one can easily obtain
σ′ ∼ ( − )− T T T/c

mf
c
mf2 . Evidently, σ′ =− 02 when =T Tc

mf (Fig. 4). This
way of the determination of Tcmf was proposed by Beasley [61] and
justified in different FLC experiments [2,46,57,58]. Moreover,
when Tcmf is properly chosen, the data in the 3D fluctuation region
near Tc can always be fitted to Eq. (3).

Fig. 4 a displays the σ′−2 vs T plot (dots) for sample Y0 (P¼0).
The interception of the extrapolated linear σ′−2 with the T-axis
determines =T 50.2 Kc

mf (Table 1). Now, when Tc
mf is found, Eq. (2)

allows one to determine ε ( )T . Above the crossover temperature
=T 54.4 K0 ( ε = −ln 2.450 , Fig. 5) the data deviate on the right

from the line, suggesting the 2D Maki–Thompson (MT) [64,65]
fluctuation contribution to FLC [2,60,66]. Evidently, at the cross-
over temperature ε∼T0 0 the coherence length ξ ξ ε( ) = ( ) −T 0c c

1/2 is
expected to amount to d [26,60,66], which yields

ξ ε( ) = ( )d0 4c 0

and allows one to determine ξ ( )0c which is one of the important
parameters in the PG analysis. Fig. 4b demonstrates the same
consideration (circles) for sample Y6 (P¼1.05 GPa) which yields

=T 56.6 Kc
nf . Also shown in the figure is the representative tem-

perature TG. It is this temperature which is generally accounted for
by the Ginzburg criterion which is related to the breakdown of the
mean-field GL theory to describe the SC transition as mentioned
above [25,59,67]. Above Tc this criterion is identified down to the
lowest temperature limit for the validity of the Gaussian fluctua-
tion region. In Figs. 4 and 5 we denote as TG the crossover tem-
perature delimiting the 3D AL fluctuation and critical intervals,
and assign this temperature to the point where the data deviate
from the straight lines corresponding to the 3D AL regime.

When ε ( )T is determined, the role of the fluctuating pairing in
the PG formation can be clarified [2,17,19–21,60]. To accomplish
this, σ′ln vs εln is plotted in Fig. 5(a—P¼0, b—P¼1.05 GPa) in
comparison with the fluctuation theories. As expected, above Tc

mf

and up to T0¼54.5 K ( ε ≈ −ln 2.450 ) σ′ vs T is well extrapolated by
the 3D fluctuation term by Eq. (3) of the AL theory (Fig. 5a, dashed
line 1) with ξ ( ) = ( ± ) ˚0 3.43 0.02 Ac determined by Eq. (4) and

∼C 4.0D3 (see Table 1). Besides, by analogy with YBCO films
[51,54,57,66] and single crystals [32,50,52], we use d¼11.67 Å¼c
which is the c-axis lattice parameter [68]. Accordingly, above T0
and up to ≈T 87.4 K01 ( ε ≈ −ln 0.301 ) σ′ can be described well by
the MT fluctuation term (5) (Fig. 5a, solid curve 2) of the Hikami–
Larkin (HL) theory [60]

σ
α δ

δ α α α
δ δ

ε′ =
−

( ) + + +
+ + + ( )

−
⎛
⎝⎜

⎞
⎠⎟

e
d8

1
1 /

ln /
1 1 2
1 1 2

,
5

MT

2
1

which dominates well above Tc in the 2D fluctuation region
[60,62,66]. In Eq. (5)

α ξ ε= ( )
( )

−
⎡
⎣⎢

⎤
⎦⎥d

2
0

6
c

2
1

is the coupling parameter,
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is the pair-breaking parameter, and τϕ defined by the relation

τ β π ε ε= = ( )ϕ T k A/8 / 8B

is the phase relaxation time, and = · −A 2.998 10 s K12 . The factor
β ξ= ( )l1.203 / ab , where l is the mean free path and ξab is the co-
herence length in the ab plane in the clean limit ( ξ>l ) [2,66].

Unfortunately, neither l nor ξ ( )Tab are accessible in our ex-
periments. To proceed with the analysis, we will use the experi-
mental fact that δ ≈ 2 when all other parameters are properly
chosen [66]. Thus, to calculate the MT fluctuation contribution
using Eq. (5), only the coupling parameter α by Eq. (6) remains to
be defined. To determine α, we have to use another experimental
fact that ξ ε ε( ) = = = ( ± ) ˚d d0 3.43 0.02 Ac 0

1/2
1 01

1/2 [27,41]. Here d1
corresponds to T01 and is the distance between conducting CuO2

planes in YBCO compounds. Substituting d¼11.67 Å one can easy
obtain ε ε= = ± ˚d d / 3.98 0.05 A1 0 01 which is actually the inter-
planar distance in SD YB2Cu3O6.65 at P¼0 [68]. This finding sug-
gests that ε01 is properly chosen. The same considerations per-
formed for Y6 (P¼1.05 GPA) provide a very similar σ′ln vs εln
with ξ ( ) = ( ± ) ˚0 2.91 0.02 Ac and = ( ± ) ˚d 3.37 0.02 A1 (Table 1).

Both εln 01 and εln 0 as well as εln G are marked by the arrows in
Fig. 5. Within the LP model it is believed that below ε01, ξ ( )Tc

exceeds d1 and couples the CuO2 planes by the Josephson inter-
action resulting in the appearance of 2D FLC of the MT type which
lasts down to T0 [2,62]. Thus, it turns out that only ε01 has to
govern Eq. (5) now and its proper choice is decisive for the FLC
analysis. As mentioned above, the corresponding temperature T01
is introduced to determine the temperature range in which the SC
order parameter wave function stiffness has to be maintained
[13,14]. As it is clearly seen from our analysis, it is just the range of
the SC fluctuations which obey the conventional fluctuation the-
ories. This is why we have to substitute ε01 instead of ε0 into Eq.
(8) to find τ β( ) = ( ± )·ϕ

−100 K 0.404 0.002 10 s13 . If we use
d¼11.67 Å and set ε ε= 0 in Eq. (8), it results in
τ β( ) = ( ± )·ϕ

−100 K 3.47 0.002 10 s13 , and we get curve 3 (Fig. 5)
which does not meet the experimental case. The result has to
support the above considerations.



Fig. 6. Pressure dependence of ξ ( )0c (curve 1), d1 (curve 2), Tc (curve 3) and ΔTfl
(curve 4). Solid lines are guides for the eye. Dashed lines are the lines of least-
squares fit. Vertical arrow designates the peculiarity at P 0.7 GPa.
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Importantly, a similar set of σ′ln vs εln , as shown in Fig. 5, was
obtained within our analysis for all applied pressure values used in
the experiment. The data demonstrate a very good fit with both,
the 3D AL and the 2D MT theories in the whole temperature region
of interest, in perfect agreement with the above considerations.
Somewhat surprisingly, despite of the pronounced decrease of
ρ ( )P (Figs. 1 and 2) the value of σ′( )T is found to be nearly pres-
sure-independent. Moreover, at all pressures the range of the wave
function stiffness, or the range of the SC fluctuations, is restricted
by ε = − ±ln 0.3 0.0101 (Fig. 5). At the same time, the crossover
temperature T0 is slightly shifted towards Tc (Fig. 5b) suggesting an
increase of the range of the 2D MT fluctuations. As a result, both
ξ ( )0c and d1 smoothly decrease with pressure (Table 1) but have a
noticeable peculiarity again at about 0.7 GPa (Fig. 6, curves 1 and
2, respectively). It is rather tempting to connect the observed pe-
culiarity with Tc, which demonstrates a hint on the similar pecu-
liarity at P¼0.7 GPa (Fig. 6, curve 3). But, on the one hand, the
same increase of Tc at P¼0.29 GPa produces no effect on ξ ( )0c and
d1 (Fig. 6). On the other hand, if Tc decreases, ξ ( )0c has to increase
(see Table 1) in contrast with the experiment.

It should be also noted that the range of FLC is located below
100 K. At the same time, ρ ( )P measured at 100 K (Fig. 2, curve 2)
demonstrates no visible peculiarity suggesting that the applied
pressure is properly evaluated. Thus, the observed peculiarity can
likely be attributed to the specific reaction of the electronic sub-
system of the studied single crystal on the applied pressure. Apart
from Tc (Fig. 6, curve 3) all other characteristic FLC temperatures
are also found to increase with pressure (Table 1). Moreover, the
increase is mainly linear. Also shown in Fig. 6 is Δ = −T T Tfl G01

(curve 4) which determines the range of SC fluctuations above Tc
[13,28,29]. The found dependence Δ ( )T Pfl looks rather linear
without any pronounced peculiarities. Both, T01 and TG also in-
crease with increase of P, but T01 increases a little bit faster, see
Table 1. Thus, pressure increases the range of SC fluctuations in
which the stiffness of the wave function of the SC order parameter
Δ is maintained. It is worthy to emphasize that both, ΔTfl and T01
are rather large, which is typical for the slightly doped cuprates
[13,28,29,66].

The obtained results allow one to consider the pressure effects
on the extent of the resistive transition and the critical fluctua-
tion regime [41,70–72]. As can be seen from Fig. 6 and Table 1,
both ξ ( )( )P0c and ( )d P1 are found to decrease with similar rates
with pressure. The total decrease is about 15% in both cases. It
also means that the coupling constant α by Eq. (6) or the coupling
strength ξ= [ ( ) ]J d0 /c

2 for the neighboring CuO2 planes [60,71,72]
is nearly pressure-independent. This is in contrast with HoBCO
single crystals [41], for which a 9.4% increase of the ξ ( )( )P0c was
found at almost constant d, resulting in increase of both, α given
by Eq. (6) and ξ= [ ( ) ]J d0 /c

2. However, like in HoBCO single
crystals, the range of critical fluctuations, Δ = −T T Tcr G c , notice-
ably increases from 1.5 K at P¼0 up to 2.7 K at P¼1.05 GPa
(Fig. 4) resulting in the corresponding decrease of the 3D AL
fluctuation region, T0–TG, from 3.7 down to 2.6 K (Figs. 3 and 4).
At the same time, in HoBCO the rate Δd T dP/cr is a factor of 5 lar-
ger, namely 5.6 KGPa�1 versus 1.14 KGPa�1. As mentioned above,
under pressure the width of the resistive transition,

ρ ρΔ = ( ′ ) − ( ′ )T T T0.9 0.1c c N c N (Fig. 3), also increases but not so pro-
nounced as found for HoBCO [41]. It is worthy to note that both,
TG(P) and Δ ( )T Pcr demonstrate the expected peculiarity at
P¼0.7 GPa (Table 2).

Having determined TG and Tc
mf for each applied pressure one

can calculate the Ginzburg number defined as = ( − )Gi T T T/G c
mf

c
mf .

Figs. 4a and b show that Gi also increases by about 20% when P
increases from 0 to P¼1.05 GPa (see also Table 2). Together with
the increase of ΔTc (Fig. 3) and ΔTcr (Fig. 4) this implies that the
genuine critical fluctuations are somewhat enhanced when the
pressure is applied. It appears somewhat surprising that the
pressure seems to improve the sample structure [41]. But similar
results have been obtained for OD YBa2Cu3O7�δ single crystals
[71] as well as for HoBCO [41,46]. According to the anisotropic GL
theory, the Ginzburg number is defined as [67,76]

α
ξ ξ

=
Δ ( ) ( ) ( )

⎛
⎝⎜

⎞
⎠⎟Gi

k
c 0 0 9

B

c ab
1 2

2

where α1 is a constant of the order of 10�3 and Δc is the jump of
the specific heat at Tc. According to the microscopic theory [73],
Δ ∼ ( )c T N 0c , where ( )N 0 is the single-particle DOS at the Fermi
level. Δc is expected to be weakly P-dependent in this range since

( )N 0 , as deduced from the Pauli susceptibility above Tc, is rather
insensitive to pressure in HTSCs [74]. The analysis of the FLC am-
plitude points to a 15% decrease of ξ ( )0c under pressure. Together
with the supposed corresponding decrease of ξ ( )0ab it can com-
pletely provide the observed increase of Gi.

This appears reasonable since the relative increase of both the
determined Ginzburg number = ( ) ( ) ≈⁎Gi Gi P Gi/ 0 1.25 and
Δ = Δ ( ) − Δ ( ) =T T P T 0 1.2 Kcr cr cr is in good agreement with the
corresponding parameters obtained for OD YBa2Cu3O7�δ single
crystals under the same pressure ( ≈⁎Gi 1.25 and Δ ≈T 0.4 Kcr ) [71].
It should be also noted that both Gi(P) and Δ ( )T Pcr demonstrate the
expected peculiarity showing anomalously large values just at

∼P 0.7 GPa (Table 2). Naturally, we expected to find similar spe-
cific features in the PG behavior of our YBa2Cu3O7�δ single
crystals.

3.2. Pseudogap analysis

The main subject of the present study is the pressure effect on
PG Δ⁎. In the resistivity measurements of HTSCs (Fig. 1), PG be-
comes apparent through the downturn of the longitudinal re-
sistivity ρ ( )T at ≤ ⁎T T from its linear behavior at higher tem-
peratures above Tn [27,31,56,76–78]. This results in appearance of
the excess conductivity σ σ σ′( ) = ( ) − ( )T T TN , as mentioned above
(Eq. (1)). If there were no processes in HTSCs resulting in the PG
opening at Tn, ρ ( )T would remain linear down to ∼Tc [75]. Thus,
the excess conductivity σ′( )T emerges as a result of the PG open-
ing. Consequently, σ′( )T has to contain information about the value
and the temperature dependence of PG [1,2,19,31,54,58].

It is well established now [2,66,76] that the conventional
fluctuation theories modified for HTSCs by Hikami and Larkin (HL)
[60] perfectly fit the experimental curves σ′( )T but only up to



Fig. 7. σ′ln vs εln (dots) plotted in the whole temperature range from Tn down to
Tc

mf. The dashed curve (1) is fit of the data to Eq. (10). Inset: ′σ −ln 1 as a function of ε.
Dashed line indicates the linear part of the curve between ε ≃ 0.7401 and
ε ≃ 1.7602 . Corresponding ε ≃ −ln 0.301 and ε ≃ln 0.5702 are marked by the arrows
at the main panel. The slope α⁎¼1.06 determines the parameter ε α= =⁎ ⁎1/ 0.94c0 .
P¼0 GPa.

Fig. 8. σ′ln vs 1/T (circles) plotted in the whole temperature range from Tn down to
Tc

mf at P¼0. The solid curves are fits of the data to Eq. (10). The best fit is obtained
when Eq. (10) is calculated for Δ ( ) =⁎ T 122.1 Kc ( Δ= ( ) =⁎ ⁎D T k T2 / 5.0c B c (curve 1).
Curves 2 and 3 correspond to =⁎D 6 and 4, respectively.
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approximately ≃T 110 K01 . Clearly, to attain information about the
pseudogap one needs an equation which specifies the whole ex-
perimental curve from Tn down to Tc and contains PG in explicit
form. Besides, the dynamics of pair-creation ∼( − )⁎T T1 / and pair-
breaking Δ∼( ( − )⁎ Texp / ) [see Eq. (10)] above Tc must also be taken
into account in order to correctly describe experiment [2,27]. Due
to the absence of a complete fundamental theory, the equation for
σ ε′( ) has been proposed in Ref. [27] with respect to the local pairs:

σ ε

Δ

ξ ε ε ε
′( ) =

− −

( ( ) ( ) ( )

⁎

⁎

⁎ ⁎

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟e A

T
T T

1 exp

16 0 2 sinh 2 /
.

10c c c

2
4

0 0

Here A4 is a numerical factor which has the meaning of the C-
factor in the FLC theory [2,27,57]. The values of Tn,ε (Eq. (2)) and
ξ ( )0c by Eq. (4) have already been determined from the resistivity
and the FLC analysis and are summarized in Table 1. The rest of
parameters,such as the theoretical parameter ε⁎

c0 [79], the coeffi-
cient A4,and Δ ( )⁎ Tc [80],can be directly derived from the LP model
analysis now [2,27]. In the range ε ε ε< <ln ln ln01 02 (Fig. 7) or
accordingly ε ε ε< <01 02 ( < <T87.4 K 139 K) (inset in Fig. 7),
σ ε′ ∼ ( )− exp1 [2,27,79]. This feature turns out to be the basic
property of the bulk HTSCs including FeAs-based superconductors
[69]. As a result,in this temperature interval σ( ′ )−ln 1 is a linear
function of ε with a slope α =⁎ 1.06 which determines the para-
meter ε α= =⁎ ⁎1/ 0.94c0 [79] (inset in Fig. 7). The same graphs, but
with α⁎ increasing up to 1.4 ( ε =⁎ 0.71c0 ) at P¼1.05 GPa, were ob-
tained for all applied pressures. This allowed us to get reliable
values of ε⁎

c0 which are found to noticeably affect the shape of the
theoretical curves displayed in Figs. 7 and 8.

To find A4, we calculate σ ε′( ) using Eq. (10) and fit the experi-
mental data in the range of 3D AL fluctuations near Tc (Fig. 7)
where σ ε′( )ln ln is a linear function of the reduced temperature ε
with the slope λ = − 1/2. Besides, Δ Δ( ) = ( )⁎ T 0c

mf
0 is assumed

[27,80]. To estimate Δ ( )⁎ Tc
mf , which we use in Eq. (10), we plot σ′ln

as a function of T1/ [27,81] (Fig. 8, circles). In this case the slope of
the theoretical curve by Eq. (10) turns out to be very sensitive to
the value Δ ( )⁎ Tc [2,27]. The best fit (solid curve 1 in the figure) is
obtained when Δ= ( ) = ±⁎ ⁎D T k T2 / 5.0 0.1c
mf

B c , which is typical for
the underdoped YBCO cuprates [2,33,66,82]. With all found para-
meters Eq. (10) perfectly describes the experimental curve

σ′( )Tln 1/ now (Fig. 7, dashed curve 1). Similar graphs were re-
vealed at all pressures applied. In all cases a very good fit is ob-
tained allowing us to get reliable values of Dn at all pressure values
(Table 2). Note that the found Δ= ( ) = ( = )⁎ ⁎D T k T P2 / 5 0c B c and

= ( = )⁎D P6.6 1.05 GPa correspond to the strong coupling limit
being typical for HTSCs in contrast to the BCS weak coupling limit
( Δ =k T2 / 4.28B c

BCS
0 established for the d-wave superconductors

[83,84]). The found values are in good agreement with the results
of the mentioned above μSR experiment [55] in which a similar
increase of the SC gap Δ0 as well as of the BCS ratio Δ k T2 / B c0 was
reported at the same pressure.

Solving Eq. (10) for the pseudogap Δ ( )⁎ T one can obtain

Δ
σ ξ ε ε ε
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−
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Here σ′(T) is the experimentally measured excess conductivity in
the whole temperature interval from Tn down to Tc

mf. The fact that
σ′( )T is perfectly described by Eq. (10) (Figs. 7 and 8) allows one to
conclude that Eq. (11) yields reliable both, the magnitude and the
temperature dependence of PG now. Fig. 9 displays the results of
the PG analysis for samples Y0 and Y6. The bottom curve 1 (dots)
is computed at P¼0 using Eq. (11) with the following set of
parameters derived from the experiment: =⁎T 252 K, =T 50.2 Kc

mf ,
ξ ( ) = ˚0 3.43 Ac , ε =⁎ 0.94c0 , =A 554 and Δ ( ) =⁎ T k/ 122.1 Kc B (Table-
s 1 and 2). The upper curve 2 (semicircles) is computed at
P¼1.05 GPa with the following set of parameters: =⁎T 254 K,

=T 56.6 Kc
mf , ξ ( ) = ˚0 2.91 Ac , ε =⁎ 0.71c0 , =A 1004 and

Δ ( ) =⁎ T k/ 178.4 Kc B (Tables 1 and 2). As can be seen in the figure,
both curves look rather similar, especially in the range of low
temperatures. At the same time, a pronounced increase of Δ⁎ with
increase of P is observed. The values of Δ ( )⁎ P for the slightly doped
samples investigated in this work are summarized in Table 1. The
revealed increase of PG under pressure is explicitly observed for
the first time and represents the main result of our study. The
details of the PG behavior under hydrostatic pressure are analyzed
next.

Fig. 9 shows that each typical feature of the Δ ( )⁎ T curve occurs



Fig. 9. Temperature dependence of the pseudogap Δ⁎ in the YBa2Cu3O6.5 single
crystal at zero pressure (curve 1, dots) and P¼1.05 GPa (curve 2, semicircles). The
data were analyzed using Eq. (11). Solid curve 3 indicates the result of such an
analysis performed at P¼1.05 GPa but using the resistivity curve polynomially
fitted down to E160 K. The solid lines indicate the linear Δ ( )⁎ T dependences below
Tpair whose slope α ≃ 0.33 is found to be pressure-independent, indicating the
noticeable increase of Δ⁎ with pressure. All temperatures marked by arrows in the
figure are discussed in the text.

Fig. 10. Temperature dependence of the pseudogap Δ⁎ of the YBa2Cu3O6.5 single
crystal at different applied hydrostatic pressures, from bottom to top: dots –

P¼0 GPa; circles – P¼0.29 GPa; squares – P¼0.56 GPa, semicircles – P¼1.05 GPa.
The curves computed at P¼6.9 GPa and P¼7.8 GPa are not shown to simplify
reading the data. The data were analyzed with Eq. (11) but using resistivity curves
polynomially fitted down to ∼160 K (see text for details). Both Δ⁎ and Δ ( )⁎ T k T2 /c

mf
B c

increase with increasing pressure at the same rate Δ ≈⁎ −d dPln / 0.36 GPa 1. The solid
lines indicate the linear Δ ( )⁎ T dependences below Tpair with the pressure-in-
dependent slope α ≃ 0.33. All temperatures marked by arrows in the figure are
discussed in the text.

Fig. 11. Pressure dependence of Δ⁎
max (curve 1), Δ ( )⁎ Tc

mf (curve 2) and
Δ= ( )⁎ ⁎D T k T2 /c

mf
B c . Solid lines are guides for the eye. Vertical arrow marks the

peculiarity at ∼P 0.7 GPa.
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at the corresponding characteristic temperature. Indeed, below
Tpair Δ ( )⁎ T appears to be linear down to T01. The linearity is de-
signated by the straight solid lines with the slope α = ±0.33 0.010

which is found to be nearly pressure-independent (see also
Fig. 10). In accordance with the LP model, above Tpair LPs have to
exist mostly in the form of SBBs. Below Tpair they have to transform
into FCP. Thus Tpair separates both regimes [2,26,19,31]. Here Tpair
is introduced as a temperature at which Δ ( )⁎ T turns down from its
linear behavior with increase of T. Below T01 PG increases
gradually likely due to the formation of SC fluctuations, showing
maximum at T0. Below T0 it rapidly decreases down to TG, which is
determined as a leftmost temperature with the reliable Δ⁎ value.
Below TG Δ⁎ increases irregularly because this is the region of
critical fluctuations where the LP model does not work. Thus, the
LP model approach allows one to get precise values of TG(P) and,
hence, reliable values of Δ Δ( ) = ( )⁎ ⁎T Tc

mf
G summarized in Table-

s 1 and 2. Evidently, Δ⁎ noticeably increases with increasing
pressure as mentioned above.

In many experiments [27,79,81] it was revealed that Δ ( )⁎ T de-
termined by Eq. (11) is very sensitive to any uncertainties in the
σ′( )T determination which stems from the spread in the resistivity
data. It results in pronounced jumps of calculated Δ ( )⁎ T at high
temperatures near Tn (Fig. 9), where σ′( )T changes at a very high
rate (see Fig. 7), which has no intrinsic physical meaning. To avoid
these jumps, all resistivity curves were fitted by a polynomial
down to ∼160 K (e.g. see Fig. 1, curve 2). Solid curve 3 in Fig. 9
indicates the result of such an approach based on the analysis of
the resistivity curve fitted at P¼1.05 GPa. As is evident from the
figure, the polynomial fit provides a precise description of the raw
data.

Analogous Δ ( )⁎ T curves calculated at =P 0, 0.29, 0.56 and
1.05 GPa using the same fitting procedure are plotted in Fig. 10.
The curves calculated at P¼6.9 and 7.8 GPa are not shown to
simplify reading the data. The calculations were performed using
Eq. (11) with the corresponding sets of parameters determined in
the above analysis (Tables 1 and 2). It should be emphasized that
all parameters listed in the Tables, except Tmax and Δ ( )⁎ Tmax max ,
where determined using FLC and the Δ ( )⁎ T curves calculated with
the raw resistivity data. As can be observed in the figure, the only
difference from the curves shown in Fig. 9 is the appearance of the
expected high-temperature maximum at Tmax followed by the
region of the linear Δ ( )⁎ T behavior with the positive slope
α = ±1.28 0.01max . The maximum appears to be a typical feature of
the SD single crystal PG behavior [41,46]. With increase of pres-
sure, the slope αmax rapidly decreases and the maximum dis-
appears already at ∼P 0.7 GPa. Simultaneously, Tmax as well as Tpair
decreases gradually with P, whereas the corresponding Δ ( )Tmax max

and Δ ( )⁎ Tc
mf increase, but again with the expected peculiarity at

∼P 0.7 GPa as shown in Fig. 11, curve 1 and curve 2, respectively.
Thus, the bulk of the sample parameters demonstrate the pecu-
liarity at P0.7 GPa which appears to be the particular pressure in
our case. As a result, with increase of pressure the shape of the
Δ ( )⁎ T dependence changes noticeably in the range of high T. But it
remains almost pressure-independent below Tpair. Eventually, at
P¼1.05 GPa the Δ ( )⁎ T curve acquires a specific shape with
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≈ ( ± )T 133 2 Kpair being typical for SD YBCO films at P¼0 [2,27].
This suggests a strong influence of pressure on the lattice dy-
namics [55] especially in the high-temperature region.

Also plotted in Fig. 11 is Δ= ( )⁎ ⁎D T k T2 /c
mf

B c (curve 3, triangles).
As expected, Dn and Δ ( )⁎ Tc

mf (curve 2, squares) both demonstrate
identical pressure dependences. It is important to emphasize that

Δ ( )⁎ T k T2 /c
mf

B c has been obtained from the fundamentally different
approach, namely from fitting of the measured excess conductivity
to Eq. (10), as illustrated in Fig. 8. Thus, the different approaches
give the same result which indicates that PG increases with
pressure at a rate Δ ≈⁎ −d dPln / 0.36 GPa 1. This value is a factor of
≃3.3 larger than that reported using tunnelling spectroscopy of
Ag–Bi2223 point contacts [45] but again in good agreement with
the results of the mentioned above μSR experiment on the SD
polycrystalline YBa2Cu3O7�δ [55].

Thus, for slightly doped YBCO single crystals both Δ⁎ and the BCS
ratio Δ= ( )⁎ ⁎D T k T2 /c

mf
B c increase upon increasing applied pressure.

This suggests an increase of the coupling strength with increasing
pressure. Strictly speaking, the increase of PG, as well as the SC gap
[45,55] in HTSCs under hydrostatic pressure remains even less
comprehensible than the corresponding increase of Tc. In fact, the
pressure dependence of the SC transition temperature is de-
termined by two mechanisms. First, it is the pressure induced
charge transfer to CuO2 planes, Δnh, as mentioned above. The sec-
ond mechanism consists in the possible increase of the pairing in-
teraction Veff which depends on pressure. For underdoped cuprates
the former mechanism dominates in the pressure effect on Tc (see
Ref. [55] and references therein). It is well known that in YBCO the
unique proximity between the Cu and O states is realized [19,85]. As
a result, the band structure of the cuprate HTSCs is determined by
the strongly correlated electron motion on the Cu(3d) orbital which
is likely under the influence of the O(2p) one. Hydrostatic pressure
can very likely affect the interaction. The possible increase of Veff
under pressure could result in increase of both Δ ( )P0 and Δ ( )⁎ P .
However, it is not clear whether this mechanism is strong enough
to provide the observed rather large increase of both, the SC gap
and the pseudogap.

Details of the electron-phonon interaction in HTSCs, which
are known to be rather specific [78,86], were thoroughly ana-
lyzed in Ref. [45] by means of tunnelling spectroscopy of Ag–
Bi2223 point contacts under hydrostatic pressure. It was shown
that the SC gap Δ0 increases with increasing pressure at a rate

Δ ≃ −d dPln / 0.1 GPa0
1 resulting in the corresponding increase of

Dn. Simultaneously, the phonon spectrum was found to be no-
ticeably shifted toward low energies. The anomalous softening
of the phonon frequencies under pressure is believed to be the
result of the specific electron-phonon interaction in Bi2223
arising from the electron hopping between the conducting CuO2

planes and is concluded to cause the observed increase of the SC
gap (see Ref. [45] and references therein). Unfortunately, there is
lack of such experiments for YBCO. As a result, the physics be-
hind the pronounced increase of the pseudogap Δ⁎ observed in
the present study under hydrostatic pressure as well as the
corresponding increase of the SC gap Δ0 reported in Ref. [55]
still remains uncertain.
4. Conclusion

The pressure dependence of the resistivity, excess conductivity
σ′( )T and pseudogap (PG) Δ ( )⁎ T of slightly doped single crystals of
YBa2Cu3O7�δ was studied within the local pair model. It was ex-
pectedly found that with increasing pressure the sample resistivity
ρ decreases at a rate ρ ( ) = ( − ± ) −d dPln 300 K / 19 0.2 % GPa 1,
whereas the critical temperature Tc increases at a rate

=+ −dT dP/ 5.1 KGPac
1, which both are in a good agreement with
those obtained for the YBCO compounds by different experimental
techniques. Pressure is believed to stimulate the processes of
charge carriers redistribution resulting in increase of nf in the
conducting CuO2 planes, that should lead to the observed reduc-
tion of ρ as well as to the increase of Tc. Simultaneously, the no-
ticeable decrease of the distance between the conducting CuO2

planes d1 with pressure was observed. It could lead to a mod-
ification of the pairing interaction Veff by pressure, which, in turn,
also can lead to increase Tc. Independently on pressure near Tc,
σ′( )T is well described by the Aslamasov–Larkin and Hikami-Larkin
fluctuation theories demonstrating a 3D–2D crossover with in-
crease of temperature. The crossover temperature T0 determines
the coherence length along the c-axis ξ ( ) ≃ ( ± ) ˚0 3.43 0.01 Ac at
P¼0 GPa. The revealed value of ξ ( )0c is typical for the slightly
doped cuprates and it is found to decrease with P. The rest of the
sample parameters also change with increasing pressure, de-
monstrating a noticeable peculiarity at ≃P 0.7 GPa, suggesting a
strong influence of pressure on the lattice dynamics likely due to
the pressure effect on the pairing interaction in the cuprates. The
same conclusion arises from the observation that pressure no-
ticeably changes the shape of the Δ ( )⁎ T curve at high temperatures
above Tpair but leaves it almost invariant at <T Tpair . The pseudo-
gap Δ⁎ and the BCS ratio Δ⁎ = ( )D T k T2 /c

mf
B c both increase with

increasing applied hydrostatic pressure at a rate
Δ ≈⁎ −d dPln / 0.36 GPa 1, implying an increase of the coupling

strength in the cuprates with pressure. The explicit modification of
the temperature dependence of PG in the slightly doped HTSCs
with increasing pressure is observed for the first time. The found
rate of the PG modification is a factor of ≃3.3 larger than that
observed by pressure experiments in OD polycrystalline Bi2223
using a tunneling technique. In Bi compounds the enhancement of
both, the SC gap Δ0 and Δ ( ) k T2 0 / B c0 was attributed to the specific
electron–phonon interaction in Bi2223 arising from possible
electron hopping between the conducting CuO2 planes. It seems to
be rather tempting to ascribe the observed increase of the PG in
YB2Cu3O6.5 single crystal to the similar softening of the phonon
spectrum under pressure. However, there is lack of such experi-
ments with YBCO, and the physics behind the observed PG in-
crease under hydrostatic pressure still remains uncertain, thus
demanding a further study.
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